
Automatic Data Distribution for Massively Parallel

Computers

Alexis Platonoff

Centre de Recherche en Informatique� �Ecole Nationale Sup�erieure des Mines de Paris�

��� rue Saint�Honor�e� ����� Fontainebleau Cedex� France	

platonof�cri�ensmp�fr

Abstract

When programming distributed memory machines� users are compelled to deal
with the data distribution	 However� this is a very complex problem	 An automatic
method has been proposed to determine automatically a placement function that
gives the virtual processor executing each operation of the source program	 But it
does not take into account the particular types of data communication available on
these machines	 In order to 
ll this gap� a new extension is proposed	 It is based
on the detection before hand of the types of communication that can be replaced
by their optimized counterparts	 It has been implemented in the parallelizer Pips
developed at �Ecole des mines de Paris	 Experiments have been done on a Cm��

and a Cray�t�d	

Introduction

A new type of computer architecture� the so called massively parallel architecture� has
appeared in the last few years� In these computers the memory is physically distributed�
so data communications between the local memories of the processors have to be han�
dled with care� Moreover� on these machines� well optimized types of communication
have been implemented� They are worth using because bad performances are often due
to the high number of expensive communications� However� the determination of the
best distribution and the use of these �fast� communications were until recently left
to the user� Many extensions to Fortran introduce some directives to do it ��Pla	
���
This problem being very complex �Mac
�� LC	�� DR	��� many studies try to solve it
automatically�
Some projects suggest methods that align arrays �GB	�� KLS	��� but with no pro�

gram transformations� Anderson � Lam introduce an algorithm that computes tasks
and data decomposition �AL	
� and try to �nd the coarsest grain parallelism with uni�
modular transformations� Darte � Robert provide a model based on a communication
graph that de�nes the data distribution with an a�ne function and they try to optimize
some communications �broadcasts� message vectorization� �DR	
� DR	���
With a similar idea Feautrier introduces the computation of a placement function

which completely characterizes the data and tasks distribution of a program �Fea	
��
The placement gives the identity of the virtual processor that executes each instruc�
tion� The goal of the placement function is to minimize the volume of communication�

�



Compared to the above methods� this approach works on any loop nest where the array
accesses are a�ne functions and it is part of a global parallelization method that com�
putes an a�ne schedule and transforms the program according to it and the placement
function�

But it does not take into account the type �and so the cost� of the communications�
For that purpose� we provide an extension of the method which is based on a special
treatment for the potential communications that can be optimized�

In the �rst section� we describe the technique introduced by Feautrier� In Section ��
we present three kinds of �fast� data movements and methods to detect them� The
third section gives the conditions under which these special communications can be
taken into account to compute the placement function� Section � provides the new
algorithm that computes the placement function� Finally� the experiments we have
done on a Cm�� and a Cray�t�d are compared to those from the initial method in
Section ��

� Framework

Our study is limited to a certain class of programs called �static control programs�
�Fea	��� based on the work of Feautrier�s team of the PRiSM laboratory �University of
Versailles� France��

In such programs the authorized control structures are only the Do loop and the If
test� the instructions are either assignment or input�output statements� the loop bound
expressions and the array subscript expressions must be integer linear expressions func�
tion of surrounding loop indices and structure parameters��

Figure � gives an example of a static control program �program FMM� for Floating
point Multiplication of Matrices�� Instructions s� and s� have been added in order to
explicitly show the initialization of both arrays�

��� Data �ow graph

The data �ow graph is computed from a static control program �noted Dfg� �Fea	����
The Dfg is in fact a kind of dependence graph in which only true dependences appear�

To each node of the Dfg are associated an instruction and an execution domain�
The execution domain is a system of constraints specifying the variation domain of the
surrounding loop indices of the instruction�

Nodes are connected by oriented edges which represent true data dependences� To
each edge of the Dfg are associated the reference of the dependence� a transformation

function in which each index of the source�s iteration domain is expressed as a linear
function of the indices of the sink�s iteration domain� and a governing predicate that
speci�es the sub�space of the sink�s iteration domain on which the edge exists �it is a
system of constraints upon the indices of the sink�s iteration domain��

Let us come back to the program FMM� The Dfg of this program has four nodes�
one for each instruction� and four edges �see Figure ��� Table � contains a detailed
description of each edge� In this table� the transformation� given in the source column�

�A structure parameter is an integer variable de�ned only once in the program� typically a constant

that de�nes the array size�

�



program FMM

integer i� j� k� n

real a�n�n�� b�n�n�� c�n�n�� a��n�n�� b��n�n�

do i�	�n

do j�	�n

s	 a�i�j� � a��i�j�

s
 b�i�j� � b��i�j�

end do

end do

do � i�	�n

do � j�	�n

s� c�i�j� � 
�

do � k�	�n

s� c�i�j� � c�i�j� � a�i�k� � b�k�j�

end do

end do

end do

end

Figure �� Program FMM

s1 s2

s3 s4

e1

e4
e3

e2

Figure �� Dfg of program FMM






is function of the indices in the destination column� The predicate column is empty
when the edge exists for all the values in the execution domain of the destination�

Edge Source Destination Reference Predicate
e� hs�� i� ki hs�� i� j� ki a
i�k�
e� hs�� k� ji hs�� i� j� ki b
k�j�
e� hs�� i� ji hs�� i� j� ki c
i�j� �� k � �
e� hs�� i� j� k� �i hs�� i� j� ki c
i�j� k � � � �

Table �� Edges of the Dfg of program FMM

��� Scheduling function

The scheduling function is computed from the Dfg �Fea	�a�� The schedule provides
for each operation of a program the logical date at which it must be executed� For an
instruction s� it is expressed as a linear function �s of the loop indices and the structure
parameters�

For a given time t� the scheduling function de�nes a set of operations which are
executed between time t and time t� � �

F �t� � fu j �s� �s�u� � tg

This set is called a front� All the operations of the same front are independent so they
can be executed simultaneously� On the contrary� the execution of two successive fronts
must be sequential�

Even with the previous restrictions� it is not possible to always have a unidimen�
sional linear schedule� Typically� this happens when there are two or more sequential
loops in the same loop nest� In that case� a multidimensional linear schedule is com�
puted �Fea	�b��

The schedule of program FMM is unidimensional�

�s��i� j� � �
�s��i� j� � �
�s��i� j� � �
�s��i� j� k� � k

This means that the �rst three instructions are fully parallel and the last instruction
has only two parallel loops �the innermost one on k is sequential��

��� Placement function

The placement function associates to each instruction a multidimensional a�ne func�
tion of the loop indices and the structure parameters �Fea	
�� It speci�es explicitly the
placement of the instruction on a virtual processor grid� i�e�� gives the identity of the
virtual processor that executes each operation of the instruction�

For a given instruction s� each dimension of its placement function is represented
with a prototype �s which is an a�ne function of the loop indices �xs � fxi

s
g� and the

�



structure parameters �c � fcig��

�s�xs� �
jxsjX
i��

��i

s
�xi

s
� �

jcjX
i��

��i

s
�ci� � �s

The goal is to �nd the values to all these unknown coe�cients� �i

s
� �i

s
� �s�

Each dimension of the placement function de�nes a distribution direction for the
instruction and all these directions constitute the distribution space of the instruction�
The number of dimensions to compute is arbitrary with a maximum equal to the
dimension of iteration space minus the dimension of the scheduling function�
Initially� the goal of the algorithm that computes the placement function is to

reduce the number of communications� For an edge e of the Dfg �transformation he�
see above Section ����� there is a potential communication between its source 	�e� and
its destination 
�e�� which can be represented by a distance�

de�x� � ���e��x�� ���e��he�x��

If such an equation is equal to zero �the edge is �cut�� then the source and the desti�
nation will be mapped onto the same processor� and there will be no communication�
The principle of the method is to nullify as much distance as possible� To each edge

is associated what is called a cutting condition represented by a system of equalities�
The distance of an edge is nulli�ed if its cutting condition is satis�ed� i�e� its equalities
are satis�ed� These equalities corresponds to the nulli�cation of the factors of the
variables �loop indices and structure parameters� appearing in the distance� In most
cases� satisfying the cutting conditions of all the edges will lead to the trivial solution�
some null dimensions� i�e� everything is on the same processor� To avoid this� some
edges must not be cut� To choose them� a greedy algorithm has been proposed that
treats the edges by decreasing importance �Fea	
�� The importance of an edge is
represented by its weight which is equal to the volume of data which have to be sent if
the edge is not cut�
For the computation of the placement function of program FMM� we create a proto�

type for each instruction�

�s��i� j� n� � ���i� ���j � ���n� ��
�s��i� j� n� � ���i� �	�j � �
�n� ��
�s��i� j� n� � ����i� ����j � ����n� �

�s��i� j� k� n� � ����i� ����j � ����k � ��	�n� ���

From Table �� we have four distances�

de��i� j� k� � ����� ����i� ����j � ����� ����k� ���	� ����n� ��� � ��
de��i� j� k� � ����i� ���� � �	��j � ����� ����k� ���	� �
��n� ��� � ��
de��i� j� k� � ����� �����i� ���� � �����j � ����k� ���	� �����n� ���� �

de��i� j� k� � ���

The instruction with a three dimensional execution domain �s�� has a non null
unidimensional schedule� And� all the others �s�� s�� s�� have a bidimensional exe�
cution domain and a null schedule� Hence� the maximum number of dimensions we are
able to compute is two�

�



��� Code generation

The �nal phase builds the parallel program using all the results of the preceding phases�
At a given time step� the parallel program has to execute the corresponding front �see
above�� synchronize and pass to the next time step� This induces the following general
architecture of the parallel program �RWF	���

do t � �� number of fronts

execute simultaneously all operation of F�t	

synchronize

end do

The code generation is based upon three transformations� The �rst is a total ex�

pansion which transforms the initial program into single assignment form �Fea

�� The
second is a loop reordering which rearranges the iteration domain of the initial loops ac�
cording to the scheduling and placement functions �the �rst gives the sequential loops�
the second the parallel ones�� The reordering is equivalent to scanning polyhedra with
do loops �AI	��� The third is a reindexing which substitutes all the array access func�
tions with new ones computed according to the new loops� A general method for
generating parallel code from the results of the preceding phases has been proposed by
Collard �CF	
b��

� Data movements

Li � Cheng ��LC	��� distinguish �ve types of data movement that can be executed on
distributed�memory machines� permutation� translation �or uniform communication�
which is a special case of permutation� aggregate communication �broadcast and reduc�
tion�� general communication and asynchronous communication� However� most of the
distributed memory massively parallel machines �e�g� Cm�� and Cray�t�d� have e��
ciently implemented the broadcast� the reduction and the translation� and o�er several
high�level primitives that use them�

To clarify this� we have compared the cost of the reduction� the broadcast� the
translation and the general communication on a Cm�� and for the same amount of
data� Table � shows the execution time of each kind of communication relatively to
each other� supposing that the reduction is done in one unit of time� We easily deduce
from this table that the use of the �rst three data movements is extremely advantageous
compare to the last one� which should be avoided as much as possible�

Reduction Broadcast Translation General communication

� ��� ��� 	�

Table �� Comparison of data movements

Thus� if we could detect the instructions that may produce this kind of data move�
ments� we could take them into account to compute the placement function� and gen�
erate the code using these primitives for a more e�cient execution�

�



��� Broadcast

A broadcast corresponds to the fact that the same memory cell is read by distinct
instances �or operations� of an instruction� If these instances are executed on distinct
processors then it is necessary to send this value to all of them� which may induce a
great cost if an optimized broadcast communication is not used� Figure 
 gives the
communication schemes of the broadcast�

Global Partial

Figure 
� Broadcast communication scheme

An edge of the Dfg is a broadcast if� the values of the indices of the source being
�xed� there exist several possible values for the indices of the destination� The trans�
formation �T � associated to each edge of the Dfg �see Section ���� expresses the values
of the indices of the source �i�� as a function of the indices of the destination �i��

T � i � i�

Thus� for a given value of i�� we are looking for all the possible values of i� This is
equivalent to looking for the solutions of a system of integer linear equations� The
solutions of such a system are in the space de�ned by the kernel of T � Ker�T �� The
basis of Ker�T � gives the broadcast directions�
Brie�y� in order to detect if an edge e is a broadcast� you only have to consider the

transformation matrix �Te�� compute its kernel �Ker�Te�� and deduce from its basis the
broadcast space�
Let us come back to program FMM and take edge e� �see Section ����� The edge is

from s� to s� and the transformation is as follows�

Te� �

�
� � �
� � �

�

A basis of Ker�Te�� can easily be found� f��� �� ��g� This means that the broadcast is
unidimensional and done along j�

��� Reduction

A reduction is the reverse operation of a broadcast� it corresponds to the computation of
a value using the values computed by di�erent instances of instructions in an associative
operation�

�



Formally� it is an order one recurrence with one equation� A few methods for the
detection of reductions already exist� as the ones proposed by Jouvelot � Dehbonei
�JD
	� or by Redon �RF	
�� The latter uses the informations contained in the Dfg
and detects general recurrences of many equations and of all order�

Practically� in order to take into account the reductions we would have to modi�ed
the schedule of the program because otherwise the reduction is sequential� The problem
of computing the scheduling function with the reductions have been solved by Redon
�RF	�� and its exploitation on the computation of placement function is currently being
studied by Barreteau �BF	��� So the reduction is not treated in our present method�

��� Translation

A translation is a data movement in which all the processors send a data �or a set
of data� on the same grid direction and at the same distance� Figure � gives the
communication scheme of the translation�

Dim = 1, step = -1 Dim = 2, step = 2

Figure �� Translation communication scheme

Let us come back to the edges of theDfg� If the distance of such an edge is constant
�but not null� it means that it represents a data movement in which the source and
destination are always at the same distance� Thus� it is a translation�

An edge distance is expressed as a linear function of the loop indices and the
structure parameters� So a constant distance means that its expression is independent
of the loop indices�

� Placement conditions

The great majority of programs to be executed on massively parallel machines will have
to perform communications� So� it is better if these compulsory data movements can be
optimized� In this section� we study the conditions to satisfy during the computation
of the placement function in order to be able to use optimized communications such as
broadcasts and translations�






��� Broadcast conditions

A broadcast communication distributes some data on several processors� hence the
destination array must be mapped according to the broadcast directions� So� for a
given edge detected as a broadcast� the conditions are put on the prototype of the
destination of the edge�
It is important to notice that a broadcast is always done along one or more di�

mensions of the virtual processor grid� Then� we distinguish the global broadcast in
which the data movement is done along all the dimensions of the grid� and the partial
broadcast in which only some dimensions are concerned�
Let us take as an example a contrived instruction with a three dimensional iteration

space �I� J�K� and for which we have determined a two dimensional distribution space
�P�Q� such as� �

P � I � J

Q � I � J

Let us now suppose that the instruction is the destination of an edge on which we
have detected a broadcast� Figure � shows the broadcast communication that we will
e�ectively be able to generate for four di�erent broadcast spaces� The �rst broadcast
can not be generated because it is partial and not parallel to one of the axis� General
communications must be used instead� The second one is global because all the dis�
tribution space is included in the projection of the broadcast space� In the third one�
the projection of the broadcast direction is parallel to one of the distribution space
axis� so it is a partial broadcast which can e�ectively be done� Finally� the fourth one
can only be executed on one dimension because the other dimension is collapsed �all
the destinations of the broadcast on the collapsed dimension are mapped to the same
processor��

Global broadcast In general� an edge represents a global broadcast when the dis�
tribution space of its destination is included in the projection of its broadcast space�
The condition is expressed by a system of equalities on the unknown coe�cients of the
prototype of the destination of the edge� If all these equalities are satis�ed we are sure
to be able to generate a global broadcast�
Let us examine an example of global broadcast condition on program FMM� We

have seen that edge e� has a broadcast space de�ned by f��� �� ��g �see Section �����
The destination of the edge is s� that has a three dimensional iteration space �see
Section ��
��

�s��i� j� k� n� � ����i� ����j � ����k � ��	�n� ���

In this case� we easily �nd the condition for which the distribution space is included in
the projection of the broadcast space��

��� � �
��� � �

Partial broadcast If a broadcast can not be global� we can make it partial� An edge
represents a partial broadcast when the space de�ned by some of the directions of the
distribution space of its destination is included in the space de�ned by the projection

	



I

J
K

I

J
K

P

Q

P

Q

Q

P

I

J
K

P

Q

NO BROADCAST GLOBAL BROADCAST

ITERATION SPACE : I, J, K

DISTRIBUTION SPACE : P = I+J, Q = I-J

I

J
K

BROADCAST SPACE : J BROADCAST SPACE : I, J

BROADCAST SPACE : I-J BROADCAST SPACE : I+J, K

PARTIAL BROADCAST ON : Q PARTIAL BROADCAST ON : P

Figure �� Global and partial broadcasts

��



of some of the broadcast directions� The idea is to keep for each instruction all the non�
global broadcasts and build a family of broadcasts directions� Then� our goal is to try
to have a projection of these broadcast directions on the distribution directions� The
condition for this is to associate a new unknown coe�cient to each broadcast direction
and substitute them in the placement prototype� These new coe�cients are such that
if one of them is set to � and all the others to � then the distribution direction is equal
to the projection of the corresponding broadcast direction�
Suppose that� for program FMM� the global broadcast condition of edge e� has not

been satis�ed� We associate a new unknown coe�cient ���� to the broadcast direction
and introduce it in the prototype of s�� In our case� the substitution is simple�

�� � ��� � �s��i� j� k� n� � ����i� ���j � ����k� ��	�n� ���

��� Translation conditions

We said above that an edge corresponds to a translation if its distance is constant�
i�e� is independent of the subscripts of the surrounding loops� The goal of the direct
method of computing the placement function is to nulli�ed as much edge distances as
possible� The distance is constant if the factors of the loop indices are nulli�ed� so
these are the �rst equalities we try to satis�ed� In this case it will be easier to make
a constant distance than a null distance� Moreover� in certain cases� it will result in
two constant distances instead of a null distance and a general �not constant� distance�
In that case� it is a better result because one general communication is much more
expensive than two translations�
The Dfg of program FMM has four edges for which we have computed distances �see

Section ��
�� For instance� from distance de� we deduce the cutting condition for edge
e��

de��i� j� k� � ���� � ����i� ����j � ���� � ����k � ���	 � ����n� ��� � ��

�

�������
������

��� � �� � �
��� � �
��� � �� � �
��	 � �� � �
��� � �� � �

The �rst three equations result from the nulli�cation of the factors of the loop indices�
Hence� we only have to consider these equations so as to make this distance constant�

� New algorithm

In �Fea	
�� Feautrier presents an algorithm for the computation of the placement func�
tion� We keep its principle of it but for the edges treatment� The goal of our extension
is to take into account both our detection of broadcast that can be attached to each
edge of the Dfg and the translation conditions �Pla	��� Thus� the order in which we
consider the edges depends on the type of communication they induce� We want to
minimize the number of communications and optimize those to be done� Hence� the
edges with optimized communication have priority and are treated �rst�

��



In the remainder of this section� we give the new algorithm for computing the
placement function�

�� Compute the weight of the edges�

�� Associate a placement prototype to each instruction�


� Detect the broadcasts� this �nds the broadcast space of each edge�

�� Satisfy the conditions of global broadcast on each edge� The edges for which at
least one equality is not satis�ed �it means the broadcast can not be global� are
kept for the cutting conditions treatment�

�� Satisfy the conditions of partial broadcast on each instruction that is destination
of edges with non�global broadcast�

�� Satisfy the cutting conditions on each edge except those with global broadcast
�translation condition� try to have constant distances �rst��

�� valuate the remaining unknowns in order to build each dimension of the placement
function�

� Experiments

All this method and the code generation module have been implemented in the par�
allelizer Pips of the �Ecole des mines de Paris �IJT	��� And we have done some ex�
periments on two massively parallel computers the Cm�� �TMC	�� and the Cray�t�d
�Mel	���

��� Placement e�ciency

In order to measure the e�ciency of our new algorithm� we have compared it to the
initial method for eight programs ��	 to �� lines of Fortran� from di�erent domains of
application�
We have classi�ed the edges in four categories depending on the type of communica�

tion it will generate at the execution� The type of communication is given by the value
of the distance after the computation of the placement function� no communication if
the distance is null �noted ND�� a translation if the distance is constant �noted CD�� a
broadcast if the distance is not constant and the edge has been detected as such �noted
BD�� a general communication otherwise �noted GD��
We have summarized our results in Table 
 which gives the mean ratio of each

type of edges for these eight programs� It is important to notice that the placement
function computed with the initial method produces no edges of type BD because it
does not detect them� This table shows that our new method produces a little more
null distance edges �ND�� i�e� there are less communications� More signi�cantly� the
number of edges of type GD �general communications� have greatly decreased� This is
because several general communications have been replaced by broadcasts�
From this sample of eight programs� we see that our new algorithm for the compu�

tation of the placement function allows� in a great majority of cases� a good communi�
cation optimization� and thus a decrease of the global communication cost�

��



Placement with Placement �
optimized initial
communications method

ND CD BD GD ND CD BD GD

�� 
 �� �� �� �� � �
 

Table 
� Mean ratio of the type of edges

��� Execution e�ciency

Experiments were done for a program of multiplication of squared matrices� We have
compared the execution time of three versions of the parallel program� the �rst one
called FMM� is the parallelized version using the initial method of placement� the second
one called FMM� is the parallelized version using the new method of placement� and
the last one called matmul uses the intrinsic function MATMUL� We have chosen to give
the speed�up of these three versions� computed with the execution time of a sequential
version on one processor�

0

1

2

3

4

5

6

7

8

9

200 400 600 800 1000

S
pe

ed
-u

p

Matrix size

seq/fmm1
seq/fmm2

seq/matmul

Figure �� Speed�up on Cm��

Figure � shows the speed�up obtained on aCm�� with 
� nodes and no vector units��
The speed�up is a function of the array size� We see that our new method have better
performances than the initial one and is not that far from the MATMUL� This proves

�Without vector units we were able to compared our parallel executions with a sequential one on

the front�end�

�




that the optimization of communications have greatly in�uenced the performances�
However� the speed�up remains low even for the should�be�optimized MATMUL since� in
the best case� the e�ciency is �� for FMM��

0

5

10

15

20

25

30

0 5 10 15 20 25 30

S
pe

ed
-u

p

Nb procs

seq/fmm1
seq/fmm2

seq/matmut

Figure �� Speed�up on Cray�t�d

Figure � shows the speed�up obtained on a Cray�t�d with a 
� nodes partition�
Here� the speed�up is a function of the number of processors and the array size is �xed
to ��� � ���� While the number of processors is not very high �i�e� less than ���
the communication cost is not signi�cant� But we see that with 
� processors� the
expensive communications induced by FMM� induce a degradation of the performances
compared with those of FMM�� The overall speed�up is good since the e�ciency is about
�� for FMM��

� Conclusion and future work

In this paper� we present an extension of an a�ne placement method that deals with
the well optimized type of communication �broadcasts� translations� implemented on
massively parallel computers� We show how to detect the broadcasts and we introduce
the conditions under which the broadcasts and the translations are taken into account
to compute the placement function� We then give a general algorithm including these
conditions�

This work has been implemented in C language and is integrated into the Pips
project �Interprocedural Parallelizer of Scienti�c Programs�� We prove the e�ciency of
the new method by comparing its results to those given by the initial method� �rstly on

��



the placement itself and secondly at the execution on two massively parallel machines�
the Cm�� and the Cray�t�d�
We assume that the method could be even more enhanced with the integration of

the reductions in the computation of the placement function� Moreover� it could be
interesting to test the method on other architectures� such as the Sp� or the Paragon�
which only requires a very small addition to our parallel code generator�

� Acknowledgment

All this work was done at the Centre d��Etude de Limeil�Valenton of the Commissariat
!a l��Energie Atomique �Cea� France� and was part of a research project done in collab�
oration with the �Ecole des mines de Paris and the University of Versailles �France��
Our experiments were done on the Cm�� of the Site �Exp�erimental en Hyperparal�

l�elisme �Seh� of the �Etablissement Central Technique de l�Armement �Etca� at Arcueil
�France� and on the Cray�t�d of the Centre d��Etude de Grenoble �Cea� France��

References

�AI��� C	 Ancourt and F	 Irigoin	 Scanning polyhedra with DO loops	 In PPOPP���� ����	

�AL��� J	M	 Anderson and M	S	 Lam	 Global optimizations for parallelism and locality
on scalable parallel machines	 In ACM SIGPLAN��� Conference on Programming
Language Design and Implementation �PLDI�� Albuquerque� New Mexico� June ����	

�BF��� M	 Barreteau and P	 Feautrier	 Automatic mapping of scans and reductions	 To
appear in HPCS���� February ����	

�CF��a� B	M	 Chapman and T	 Fahringer	 Automatic support for data distribution on dis�
tributed memory multiprocessor systems	 Technical Report ����� Institute for Soft�
ware Technology and Parallel Systems� University of Vienna� ����	

�CF��b� J	�F	 Collard and P	 Feautrier	 Automatic generation of data parallel code	 In Fourth
International Workshop on Compilers for Parallel Computers� Delft University of
Technology� The Netherlands� December ����	

�DR��� Alain Darte and Yves Robert	 A graph�theoretic approach to the alignment prob�
lem	 Technical Report ������ Laboratoire de l�Informatique du Parall�elisme� Ecole
Normale Sup�erieure de Lyon� July ����	 To appear in Parallel Processing Letters	
Available via anonymous ftp on lip�ens�lyon�fr	

�DR��� Alain Darte and Yves Robert	 Mapping uniform loop nests onto distributed memory
architectures	 Parallel Computing� ����������� ����	

�Fea��� P	 Feautrier	 Array expansion	 In ACM Int� Conf� on Supercomputing� Saint�Malo�
July ����	

�Fea��� P	 Feautrier	 Data�ow Analysis of Array and Scalar References	 Int� Journal of
Parallel Programming� ��
��������� February ����	

�Fea��a� P	 Feautrier	 Some E�cient Solutions to the A�ne Scheduling Problem� Part I �
One�dimensional Time	 Int� J� of Parallel Programming� ��
����������� October
����	

�Fea��b� P	 Feautrier	 Some E�cient Solutions to the A�ne Scheduling Problem� Part II �
Multidimensional Time	 Int� J� of Parallel Programming� ��
����������� December
����	

��



�Fea��� P	 Feautrier	 Toward Automatic Partitioning of Arrays on Distributed Memory Com�
puters	 In ACM ICS���� pages �������� Tokyo� July ����	

�GB��� M	 Gupta and P	 Banerjee	 Demonstration of Automatic Data Partitioning Tech�
niques for Parallelizing Compilers on Multicomputers	 IEEE Transactions on Parallel
and Distributed Systems� �
����������� March ����	

�IJT��� F	 Irigoin� P	 Jouvelot� and R	 Triolet	 Semantical interprocedural parallelization� An
overview of the pips project	 In ACM International Conference on Supercomputing�
K�oln� Germany� ����� June ����	

�JD��� P	 Jouvelot and B	 Dehbonei	 A uni
ed semantic approach for the vectorization
and parallelization of generalized reductions	 In Procs� of the �rd Int� Conf� on
Supercomputing� pages �������	 ACM Press� ����	

�KLS��� K	 Knobe� J	D	 Lukas� and G	L	 Steele� Jr	 Data Optimization� Allocation of Arrays
to Reduce Communications on SIMD�Machines	 Journal of Parallel and Distributed
Computing� ���������� ����	

�LC��� J	 Li and M	 Chen	 Index Domain Alignment� Minimizing cost of cross�referencing
between distributed arrays	 In Frontiers��	
 �rd Symp� Frontiers Massively Parallel
Computation� College Park� MD� October ����	

�LC��� J	 Li and M	 Chen	 Compiling communication�e�cient programs for massively paral�
lel machines	 IEEE Transactions on Parallel and Distributed Systems� �
�����������
July ����	

�Mac��� M	 Mace	 Memory Storage Patterns in Parallel Processing	 Kluwer Academic Pub�
lishers� ����	

�Mel��� A	 Meltzer	 Programming for Performance in CRAFT on the T�D	 Technical report�
Cray Research Inc	� Eagan� Minnesota� July ����	

�Pla��� A	 Platono�	 Which Fortran for Massively Parallel Programming � Technical Report
��	��� IBP�MASI� Universit�e P	 et M	 Curie 
Paris ��� February ����	 Available via
anonymous ftp on ftp�ibp�fr	

�Pla��� A	 Platono�	 Contribution �a la Distribution Automatique des Donn�ees pour Machines
Massivement Parall�eles	 PhD thesis� Universit�e P	 et M	 Curie� Paris� France� March
����	

�RF��� X	 Redon and P	 Feautrier	 Detection of reductions in sequentials programs with
loops	 In M	 Reeve A	 Bode and G	 Wolf� editors� 
th Int� Parallel Architectures and
Languages Europe� pages �������� June ����	

�RF��� X	 Redon and P	 Feautrier	 Scheduling reductions	 In ACM Press� editor� Procs of the
�th ACM International Conference on Supercomputing� pages �������� July ����	

�RWF��� M	 Raji�Werth and P	 Feautrier	 On parallel program generation for massively par�
allel architectures	 In M	 Durand and F	 El Dabaghi� editors� High Performance
Computing II	 North�Holland� October ����	

�TMC��� Thinking Machines Corporation� Cambridge� Massachussetts	 Connection Machine
CM�
 Technical Summary� January ����	

��


