
Automatic Data Mapping of Signal Processing Applications

Corinne Ancourt� Denis Barthou� Christophe Guettier�

Fran�cois Irigoin� Bertrand Jeannet� Jean Jourdan� Juliette Mattioli�

Abstract

This paper presents a technique to map automatically a complete digital signal processing
�DSP� application onto a parallel machine with distributed memory� Unlike other applica�
tions where coarse or medium grain scheduling techniques can be used� DSP applications
integrate several thousand of tasks and hence necessitate �ne grain considerations� More�
over �nding an e�ective mapping imperatively require to take into account both architectural
resources constraints and real time constraints� The main contribution of this paper is to
show how it is possible to handle and to solve data partitioning� and �ne�grain scheduling
under the above operational constraints using Concurrent Constraints Logic Programming
languages �CCLP�� Our concurrent resolution technique undertaking linear and non linear
constraints takes advantage of the special features of signal processing applications and pro�
vides a solution equivalent to a manual solution for the representative Panoramic Analysis
�PA� application�

Keywords� parallelizing compiler� scheduling� constraint logic programming

�� Introduction

The post World War II era has resulted in the trend of using Digital Signal Processing
�DSP� technologies for both military and civilian applications� The growing requirements
for sophisticated algorithms� especially those used for ��D applicative domains� lead to
process in real time large multi�dimensional arrays of data� These applications are executed
on parallel computers� that o�er enough computing power 	
���
The mapping of DSP applications onto parallel machines raises new problems� The real

time and target machine constraints are imperative� The solution must 
t the available
hardware� the local memory� the number of processors� the processor communications�
The application latency must meet the real time requirements� This necessitates 
ne�grain
optimizations� Combining both kinds of constraints is still out of the scope of automation
and requires deep human skills�
This paper presents a new technique to map automatically DSP application� represented

by a sequence of loop nests� onto a SPMD distributed memory machine� This technique is
based on formalizations of the architectural� applicative and mapping models by constraints�
The result is ��� a 
ne grain a�ne schedule of computations� �
� their distribution onto
processors and ��� a memory allocation� Computations are distributed in a block�cyclic

��ancourt�irigoin�cri�ensmp�fr� Ecole des Mines de Paris�CRI ����� Fontainebleau� France
��Denis�Barthou�prism�uvsq�fr� PRISM� UVSQ� ��� avenue des Etats	Unis �
��� Versailles� France
��guettier�jeannet�jourdan�juliette��thomson�lcr�fr� LCR� Thomson	CSF� Domaine de Cor	

beville� F	����� ORSAY� France



way on processors� Communications are overlapped with computations when possible�
The memory model is precise� Only the amount of memory useful to the computations is
allocated�
The mapping problem is designed to distribute computations and data onto a parallel

machine� The block size of computations that can be executed onto a processor according
to their local memory size should be estimated� The computation partitioning into blocks
should 
t the number of processors� And the computational blocks should be scheduled
according to real time constraints� This general mapping problem has been proved to be
NP�complete 	��� ���� Moreover� it cannot be expressed in a single linear framework because
the formulation of the general problem �data AND computation distributions� involves non
linear constraints� While data dependence constraints can be translated into linear in�
equations and then solved by classical linear programming algorithms� resource constraints
require non linear expressions� Solving directly both constraints is still out of the scope
of any general algorithms and necessitates the combination of integer programming and
search 	
��� Following the same idea of combining constraints solving and nondeterminism�
our technique uses a new approach� the CCLP 	��� ��� approach� Unlike conventional con�
straint solvers based on black box algorithms� CCLP languages use an incomplete constraint
solvers over a 
nite domains algebra� The two main advantages of using such algorithm
are 
rst to enhance compositionality features 	�
� ��� and secondly to o�er basic control
structures for expressing new constraints 	�
��
Our approach takes as input the speci
cation of di�erent models such as� the target

machine� the communication cost� the application� the partitioning� the data alignment�
the memory allocation and the scheduling models� Then� the CCLP assets enable to handle
linear and non linear expressions and to yield� through the concurrent propagation of the
constraints over all the models to solutions� satisfying the global problem� The solution
outlook depends on multiple criteria as memory allocation or latency which are speci
ed
by the user�
The article is organized as follows� Firstly� the characteristics of the target machine and

DSP applications are presented� Secondly� our constraint formalization of the problem is
exposed� Especially� the partitioning� scheduling and memory models are detailed� Thirdly�
the concurrent resolution programming technique is presented� followed by our prototype
results� Finally� a comparison with other approaches is described before concluding�

�� Architectural and applicative features

This section presents an overview of the architectural and application features that char�
acterize our general mapping problem formulation�

���� Architectural features

The target machine is an abstract SPMD distributed memory machine� The mapping is
constrained by machine resources�

Number of processors� The application is mapped on all processors� However� criteria
like memory allocation or communication minimization may enforce the use of fewer
processors�



Local memory size� Because there is no global memory� the amount of memory necessary
to execute a set of computations� mapped onto a processor at a given moment� must

t the available processor memory�

Processor rate� The latency criteria �amount of time between one input and the corre�
sponding output� can be 
xed to a maximum value�

Overlap of computations and communications� The partitioning model takes advan�
tage of this property to overlap communications with computations�

The 
rst three parameters are given by the programmer� Our system searches solutions
that satisfy these resource constraints� Search with optimization criteria such as local
memory minimization do not change the architectural model but designs a particular search
implementation�

���� Applicative features

In this section the DSP applicative features are described� These features have been
investigated for several years at Thomson�CSF by A� Demeure�

The application is a sequence of loop nests in a single�assignment form

It describes an acyclic graph of tasks� Each loop nest includes a procedure call �called
macro�instruction� that reads one or several multidimensional data arrays and updates
one di�erent array� Array accesses are a�ne functions of loop indices with eventual
modulo� Figure � presents a global view of PA application 	��� Figure 
 details the

rst PA loop nest�

Parallelism� Since the application is in a single�assignment form� each loop nest is full�
parallel� Furthermore� the loops are perfectly nested�

Macro�instructions can be seen as black boxes where computational dependencies are
encapsulated� Macro�instructions are DSP library calls� such as Fast Fourier Trans�
form� Our approach schedules the application at this macro�instruction level�

Arrays have one in�nite dimension� due to the real time constraint� The computa�
tional recurrence extraction from the application puts forward a cyclic schedule of a

nite amount of computations� Then� classical parallelization techniques can be used�

DSP applications manipulate array references that can be represented by Read and Write

regions 	��� �
�� Read and Write regions represent� with a�ne constraints 	���� the set of
array elements read and written by the macro�instruction� Figure 
 gives the FFT read and
write regions� As macro�instructions are generally DSP library calls� these regions should
be allocated fully in the local memory during the macro�instruction computation�

�� Constraint formalization

Our technique uses a multi�model approach 	�
� to describe the general mapping prob�
lem� Due to space limitation� only the partitioning� scheduling and memory models are
presented here� But the communication� latency� architectural and applicative models ob�
viously in�uence the resolution� The CCLP constraint solver uses the models to test and
search the solutions that satisfy all the constraints�



doall r�c
call FFT�r�c�

enddo
doall r�f�v
call BeamForming�r�f�v�

enddo
doall r�f�v
call Energy�r�f�v�

enddo
doall r�v
call ShortIntegration�r�v�

enddo
doall r�v
call AzimutStabilization�r�v�

enddo
doall r�v
call LongIntegration�r�v�

enddo

Figure �� Panoramic Analysis application

do r	
�infinity
do c	
����

c Read Region

c SENSOR�c�����r
����r�����
c Write Region

c TABFFT�c�

����r�

call FFTDbl�SENSOR�c�����r
����r������
TABFFT�c�

����r��

enddo
enddo

Figure �� FFT Loop nest

	��� Partitioning model

The partitioning model is designed to map computations onto the target machine� Since
DSP applications are sequences of parallel loop nests� the partitioning problem results in
loop nest by loop nest partitioning�
The multidimensional iteration domain �I� is partitioned into n partitions

I �
n�

i��

Parti

and computations are not replicated �no overlap between partitions��

�j� � � j �� i � n� Parti
�

Partj � �

The application parallelism degree� memory location requirement and time scheduling pa�
rameters are controlled by the partitioning� The iteration domain is decomposed over �
vector parameters� x� y� z� Block� cyclic and block�cyclic distributions are possible� The
partitioning is equivalent to the HFP distribute directive� the same distribution formal�
ization follows�

�i � I�

���
��

i � LPx� Ly � z �� bloc�cyclic distribution ��

�z� � � L��z � �� �y� � � P��y � � �� no partition overlap ��

det�L� �� �� det�P � �� � �� finite partition ��

P and L are diagonal square integer matrices� Except for the in
nite dimension� the �
parameters can be assigned independently to Processor p� Cyclic recurrence c or Local
memory l� The 
nite resource constraints imply� x � c for the in
nite dimension� The
case where �x� y� z� � �c� p� l� implies that max�l� �

Q
iLii is the number of local iterations

executed by one processor at each cycle c �each local iteration execute a macro�instruction��
This set of computations de
nes a computational block� max�p� �

Q
i Pii gives the maxi�

mum number of processors and max�c� the maximum number of synchronizations �cycles�
necessary for the loop nest completion�



Due to DSP application features� the array access functions use at most per array di�
mension one explicit loop index and one implicit loop index �for macro�instruction� which
scans the read or write region� Since read and write regions are not partitionable� only
the explicit loop nest is partitioned� Partitioning matrices are diagonal �with an eventual
permutation�� Figure � presents the PA loop nest partitioning� It expresses that � iteration
r �L��� and �� �L��� iterations h �see Figures ��
� are mapped on each of the � �P�� � P���
processors�

	��� Scheduling model

The scheduling model is designed to associate to each computation a logical execution
event on a processor� The resulting schedule can be viewed as a succession of loop trans�
formations� In general� it is not possible to 
nd automatically the transformation set to
apply such that the 
nal schedule is optimal� So� the a�ne scheduling approach� used in
systolic arrays and parallelization techniques 	
�� 

� ��� ��� ���� is chosen and applied to
our context�
The partitioning model states that computations having to be scheduled �called compu�

tational block� are the set of L pipelined local iterations mapped onto p at cycle c� Since
the programming model is SPMD� p does not need to appear in the schedule formulation�
Thus� it only depends on vector c which fully describes the block of l iterations to perform�
We choose the a�ne schedule class of events to search as�

dk�ck� � N��k � ck � �k� � k

Variables are indexed by the loop nest number k� dk is the scheduling function of the
kth�loop nest� �k and �k are the scheduling a�ne parameters� �k is a line vector� and �k

is scalar� N is the number of loop nests� It is used in the formulae with the o�set �k in
order to avoid the execution at the same date of two computations belonging to di�erent
loop nests�
In the same way� two computational blocks of a single loop nest cannot be executed at

the same date� Let cki and ckj with i � j be two cyclic components of the partitioned loop

nest Nk� Then� the execution period of Cycle cki must be greater than the execution time
of all cycles ckj � Hence� Constraints� �

k
i �

P
j�i �

k
j max�c

k
j � with �k

n � � must be veri
ed�
As an example of additional constraints that link the partitioning and scheduling models�

the data �ow dependencies express that a piece of data of loop nest N r cannot be read
before being updated by Nw� These dependencies between two cycles cw of loop nest Nw

and cr of N r imply that�

��cw� cr� Dependence�cw� cr�	 dw�cw� � � � dr�cr� ���

dw �respectively dr� is the scheduling associated to N r �resp� Nw��
Note that these dependencies are computed between iterations of di�erent loop nests�

Data �ow dependencies are approximated by their convex hull representation� However�
this approximation lets us to obtain the same set of valid schedules as with the exact
representation without any loss� Due to DSP application characteristics� this representation
can remain symbolic� This improves the constraints propagation� since no costly algorithm
is needed to solve the dependence test�



	�	� Memory model

The memory model ensures the application executability under a memory constraint� A
capacitive memory model is used� It evaluates the memory required for each computational
block mapped onto a processor by analyzing the data dependencies� An allocation function
can be extracted straightforwardly from the memory allocation result when the schedule is
known after the optimization phase�
A data block is the data set needed to execute a macro�instruction� The number of

data blocks needed to execute a computational block is derived� Due to the partitioning
model all computational blocks have the same simple structure and the data blocks have
the same size� Data dependencies are used to determine the data block life time� A data
block is alive from its creation date �corresponding to its allocation� to its last use date� For
each computational block� the schedule and data dependencies give the maximum life time
of a data block and the number of data block creations during one cycle� This gives the
required memory capacity per computational block and cycle� The addition of the di�erent
computational block memory requirements gives the amount of memory necessary to the
complete application execution�
The memory is organized in segments of identical data blocks� one per loop nest� This

eliminates the problems of memory fragmentation and the eventual need of block reloca�
tion� Data duplications due to input sets of references overlap between successive iterations
are eliminated by using partial data block decompositions� Only new partial data blocks
are kept and fused to others� This re
nement is powerful enough to handle any multidi�
mensional read overlaps and proved very e�cient on the studied DSP applications�
The previous capacitive memory constraints de
ne the memory requirements for execut�

ing the tasks onto each processor according to their local memory size� The local memory
size is 
xed by the programmer� Optimizations such as local memory minimization are
particular search implementations and do not change the memory model�

�� Resolution

Constraint logic programming is a generalization of logic programming where uni
cation
is replaced by constraint solving over several computation domains� These domains include
linear rational arithmetics� boolean algebra� Presburger arithmetics and 
nite domains 	
���
More recently the introduction of the notion of constraint entailment� stemming from the
Ask 	 Tell paradigm of concurrent programming 	���� enhanced the CCLP framework with
synchronism mechanisms� This new class of CCLP �see 
g� �� languages 	�
� �
� o�ers
control structures enabling in one hand a better interleaving of the goals of several models
and on another hand a new way to de
ne non�primitive constraints�
The cardinality operator ��l� u� 	c�� ���� cn� 	���� the constructive disjunction operator


�c�� ���� cn� 	���� the entailment and the conditional propagation operators are some ex�
amples of new connectives of CCLP languages� From an operational standpoint� they
are based on constraint solving� constraint entailment and arithmetic reasoning� Going in
deeper details on CCLP is out of the scope of this paper but we have used these new capa�
bilities to extend our CCLP languages Meta�F� 	��� in order to solve e�ciently polynomial
constraints over 
nite domain variables�
Thanks to their unique combination of constraint�solving� nondeterminism� and rela�

tional form� CCLP languages have been shown to be very e�ective in solving complex and



Tell� Satisfaction mechanism

P� T h�S� j� ���c

Ask� Entailment mechanism

P� T h�S� j� ������ c�

where P is a CCLP program� T h�S� a theory of the S algebra� � a guard and c a constraint�
CCLP program� Set of logic rules of the form fA
 a c jA�� ���� Akg
where a� c et fAig represent respectively a set of constraints of type ask� of constraints of
type tell and logical atoms�

Figure �� CCLP programs and its two basic mechanisms

heterogeneous problems 	��� ��� comparable in e�ciency to specialized algorithms� In the
two next sections we show how we can handle and solve our mapping problem using such
kind of new language�


��� How does CCLP handle our global mapping problem �

The mapping models such as partitioning and scheduling are represented with mathe�
matical variables and a�ne constraints� Non�linear constraints link the di�erent models
and generally are composed with complex and polynomial terms� For example� constraint
�
� links partitioning and architecture models� The number of processors required by the
partitioning must be smaller than the number of processors available�

NumberOfProcessors � maxk��
n
i���P

k
i�i�� �
�

The latency� resources and data��ow dependencies constraints ��� are global constraints�
The e�ective CCLP expressions of the global mapping problem has required an in�depth

collaboration between CCLP and Parallelism specialists� The 
ne grain models� issued from
parallelization techniques� induce a CCLP model mostly based on the expression of sets of
macro�instructions� data blocks and dependency relationships� Those sets are represented
as intension rather than extension models�
In some cases� this task was impossible to perform directly and the proposed models

have to be recasted in a set of expressible constraints representing an approximation of
the model� For instance� the dependency relationships between blocks of computations
cannot be stated in the original constraint ��� due to the ��cw� cr�� The constraint has
been implemented as constraint ����

��cws � c
r
s� dw�cws � � � � dr�crs� ���

where �cws � c
r
s� are the vertex components of the convex hull of the dependencies� that

have been computed symbolically� Hence� the scope of this � is restricted to the number of
vertices�


��� How does CCLP solve our global mapping problem �

Models are linked by the variables that appear concurrently into the model constraint
formalizations� For example� the computational block size c appears in the partitioning�



dependence� scheduling and communication models� During the resolution� models com�
municate their partial information about these variables to others�
While storing the di�erent constraints� the CCLP system builds a solution�space on a

model�per�model basis� Each model solution space is pruned when constraints are prop�
agated from other models� Once all models have been built into the system� non�linear
constraints linking the di�erent models still have to be met� Solutions must be looked for
in a resulting overall search space using a speci
c global search�
This search relies ��� on the semantic of the variables of each model and their importance

w�r�t� other models and �
� the goal to achieve �i�e� resource minimization under latency
constraint� latency minimization under resource constraint�� Each variable takes part in
a global cross�model composite solving� such that only relevant information is exchanged
between models� The global search looks for partial solutions in the di�erent concurrent
models� For instance� the set of scheduling variables �	�i� �i� and partitioning matrices Pi� Li

are partially instantiated by inter�model constraints during the resolution� Model�speci
c
or more global heuristics are used to improve the resolution�e�g� schedule choices are driven
by computing the shortest path in the data��ow graph�
Based over models semantic and speci
c heuristics� the global mapping problems is solved

through CCLP using complex composition schemes�

If dedicated algorithms are used� the composition of the di�erent functions only is possible
by sequential solving according to the functional programming paradigm� It restricts the
composition facilities and has a too high complexity� Traditional generic solvers� as Simplex�
are designed to solve only linear constraints in a convex rational context� The Simplex
category algorithms does not support models cooperation�

Integer programming allows to recast complex non�linear constraints using boolean vari�
ables� Therefore� links between models are represented using boolean variables which re�
stricts partial information exchanges between models�

�� Results

This section illustrates our prototype results� The user speci
es the target machine
and the option criteria� In this example� the optimizing cost function is the memory size
minimization� The target machine has � processors� The latency constraint is set to �����

processor clock cycles and the memory is unbounded� Figure � describes the partitioning
of PA� The loop nest parallelism and locality are expressed with the diagonal matrices P
and L �

���� Partitioning

The partitioning characteristics follow� ��� Only 
nite dimensions are mapped onto the
� processors� This solution satis
es the latency constraints� �
� The write region of the
second loop nest is identical to the read region of the third loop nest� So the system fuses
these loop nests in order to reduce memory allocation� ��� The access analysis of the second
and third loop nests presents read region overlaps between successive iteration execution�
This overlap is detected� The system parallelizes according to another dimension to avoid
data replication�



FFT Beam Forming Broad Band� Short Integration�

Energy Azimut� Long Integration

Parallelism

P �

�
� �

� �

� 	

 � � �

� � �

� � �

�
A �

� �

� �

�

Locality

L �

�
� �

� ��

� 	

 � � �

� ��� �

� � ��

�
A �

� �

� ��

�

Figure �� Partitioning matrices for Panoramic Analysis

���� Schedule

FFT Beam Formaing�Energy Broad Band Sht Int Azimut Lng Int

�

�
�

�

� 	

 �

�

�

�
A �

�

�

� �
��

�

� �
��

�

� �
	��

�

�

� � � � �� �� 	�	

Figure �� Scheduling matrices for Panoramic Analysis

According to the di�erent partitions� only
the time dimension is globally scheduled�
From the � and � scheduling parameters
in Figure �� the schedule can be expressed
using the regular expression�

���FFT� 	BF�E�� BB��� SI� SA��� LI��

Computational dependencies between iter�
ations are satis
ed� The system provides a

ne grain schedule at the macro�instruction
level using the dependence graph shortest�
path� This enables the use of data as soon
as possible� avoids bu�er allocations� and
produces output results at the earliest� On
the right hand side� the corresponding loop
nest is represented�

do ili���infinity

do isa����

do ibb����

FFT�ibb�

BeamFormingEnergy�ibb�

BroadBand�ibb�

enddo

ShortInteg�isa�

StabAzimut�isa�

enddo

LongInteg�ili�

enddo

Eight iterations of Tasks FFT�BF�E�BB �executed every ��
�
� � steps� are performed

before one iteration of SI�SA �executed every �� � ��� steps�� The last task LongInteg

cannot be executed before � iterations of the precedent ones� So it is executed every ���
������� steps�

��	� Comparison with manual mappings

Manual mappings of DSP applications are performed in di�erent ways� In general� user�
friendly interfaces provided by manufacturers o�er some help for coarse grain parallelism�



The application is scheduled at the task level and not at the macro�instruction level� Thus�
load balancing is more di�cult to obtain�
While it is hard for a human being to instantiate the di�erent models satisfying all

constraints� we have compared our solution to two di�erent manual solutions� The 
rst one
is based on loop transformation techniques� The second one uses the maximization of the
processor usage as only economic function� Our result is equivalent to the one suggested
by parallelization techniques� It is better than the second one which requires more memory
allocation�

��
� Towards global optimization

Between two successive solutions� the system takes important decisions to optimize the
mapping� The optimization trace is shown in Figure ��

Row � represents the original set of constraints�
a large initial memory size� � processors� and
a quite restricted latency� Solution � gives a
bad partitioning of the fused loop nests Beam

Forming�Energy� and produces an allocation
with data replication� Solutions 
 and � are
mixed� parallelism is set on di�erent dimensions�
Solution � maps parallelism on the appropriated
dimension� thus minimizes data replication� Fi�
nally� the system 
nds that taking � processors
still satisfy the latency constraint and reduces
memory cost�

Memory Optimization

sol
 Nb Memory Latency
numb
 proc
 Kwords Mcycl


� 
 �����
� ���
� 
 ���

� ���
� 
 ����
� ���
� 
 ���
� ���
� 
 
��
� ���
� � 
��
� ���

Figure �� Optimizing the memory size

The 
rst solution is obtained in a few minutes while this optimization is completed in
ten minutes on a SPARC��� Workstation� These times have to be compared with human
being inquiries to comprehend and map the application�

�� Related Work

Mapping applications onto parallel machines addresses issues such as scheduling 	����
parallelization 	��� loop transformations 	
�� �� ���� parallel languages 	��� 
�� ��� integer
linear programming and machine architecture� A lot of work has been done to optimize a
few criteria such as data and�or computation distribution 	��� 
�� ��� �� ���� parallelism
detection� minimization of communications 	��� 
� ��� ��� processor network usage� This
section focuses on the most relevant work�
Although manual loop transformation techniques are attractive and give good results�

it is not possible to 
nd automatically the transformation set to apply for obtaining the
optimal schedule 	��� ��� However restructuring the application such that the parallelism
and data locality are maximized is yet a relevant objective� Many studies 	�� ��� ��� present
interesting approaches� Thereafter� the compiler is in charge of mapping physically the
optimized application of the target machine� Compared to our approach� there is no real



time and architectural constraints �number of processors and memory resources� to take
into account during the parallelization phase�
Similar techniques are used in systolic arrays 	��� ��� ��� and parallelization 	
�� 

� 
��

communities to compute a�ne schedules� In the systolic community� these techniques are
applied on a single loop nest with complex internal dependencies� The other approaches
dealing with complete applications� do not have the same architectural and application
constraints� The parallelism grain is at the instruction level� there is no real time constraint
and the target machine is generally virtual�
DSP application features are taken into account in 	���� This approach is based on task

fusion� but for a sequential result� Mapping statically DSP application with speci
c signal
requirements 	
�� ��� have been widely investigated� The representative Ptolemy framework
	��� ��� ��� brings some solution but at a coarse grain level� Most of the resolution schemes
are based on dedicated algorithms 	���
Our approach is the 
rst one to propose an optimal a
ne schedule of a complete appli�

cation with a �ne grain parallelism �at the macro�instruction level� and its mapping onto
a architecture under resource and real time constraints�

�� Conclusion

A technique to map automatically DSP applications onto distributed memory machines
has been introduced in this paper� It uses a multi�model approach to describe the general
mapping problem and a concurrent resolution framework based on the Constraint Logic
Programming� Even if the presented model constraints are linear� our system comes to
terms with non�linear constraints�
Our experiences on DSP benchmark show that our prototype takes into account all

architectural and applicative parameters� Sequential� pipelined and parallel schedules are
generated depending on the applications� Comparisons with manual solutions proves that
our approach may provide interesting� indeed better� solutions�
Future work focuses on developing strategies to speed�up the solution enumeration and

on extending the set of applications automatically proceed�

	� Acknowledgments

We wish to give special thanks to F� Coelho for his constructive remarks and critical
reading of this paper� We also thanks T� Brizard� P� Legal and B� Marchand for their
continuous support�

References

��� J
R
 Allen and K
 Kennedy
 Automatic translation of Fortran programs to vector form
 ACM Trans�
actions on Programming Languages and Systems� ������������� October ��
�


��� J
M
 Anderson and M
S
 Lam
 Global optimizations for parallelism and locality on scalable parallel
machines
 In SIGPLAN Conf on Programming Language Design and Implementation� pages ��������
Albuquerque� NM� June ����
 ACM Press


��� Fran�coise Andr�e� J
	L
 Pazat� and Henry Thomas
 Pandore� a system to manage data distribution
 In
Int� Conf� on Supercomputing� pages �
���

� June ����




��� U
 Banerjee
 Unimodular transformations of do loops
 Technical Report CSRD Rpt
 No
 ����� Uni	
versity of Illinois� August ����


��� D
 Bau� I
 Kodukula� K
 Pingali� and P
 Stodghill
 Solving alignment using elementary linear algebra

In Proc� of the seventh Annual Workshop on Languages and Compilers for Parallelism� pages �
���
���
August ����


��� S
 S
 Bhattacharyya� S
 Sriram� and E
 A
 Lee
 Latency	constrained resynchronisation for multiproces	
sor dsp implementation
 In Proceedings of ASAP���� ����


��� E
 Bixby� K
 Kennedy� and U
 Kremer
 Automatic data layout using �	� integer programming
 In Proc�
of the International Conference on Parallel Architectures and Compilation Techniques� August ����


�
� M
 Bouvet
 Traitements des Signaux Pour les Syst�emes Sonars
 Masson


��� D
 Callahan
 A Global Approach to Detection of Parallelism
 PhD thesis� Rice University� March ��
�


���� P
 Clauss� C
 Mongenet� and G
	R
 Perrin
 Synthesis of size	optimal toro��dal arrays for the algebraic
path problem� A new contribution
 Parallel Computing� North�Holand� �
��
������ ����


���� P
 Codognet� F
 Fages� J
Jourdan� R
 Lissajoux� and T
 Sola
 On the design of meta�f� and its
application to air tra�c control
 In Proc� ICLP��	� Washington DC� USA� ����


���� B�eatrice Creusillet
 Array Region Analyses and Applications
 PhD thesis� �Ecole des Mines de Paris�
December ����


���� B�eatrice Creusillet and Fran�cois Irigoin
 Interprocedural array region analyses
 International Journal
of Parallel Programming 
special issue on LCPC�� �������������� ����


���� A
 Darte and Y
 Robert
 Constructive methods for scheduling uniform loop nests
 IEEE Transactions
on Parallel and Distributed Systems� ��
��
��� August ����


���� Alain Darte� Leonid Khachiyan� and Yves Ropbert
 Linear scheduling is nearly optimal
 In Parallel
Processing Letters� pages ���
�� ����


���� Alain Darte and Yves Robert
 A�ne	by	statement scheduling of uniform loop nests over parametric
domains
 Technical Report ��	��� LIP	IMAG� April ����


���� Alain Darte and Yves Robert
 Mapping uniform loop nests onto distributed memory architectures

Parallel Computing� ����������� ����


��
� C
 G
 Diderich and M
 Gengler
 Solving the constant	degree parallelism alignment problem
 In Eu�
ropar���
 Laboratoire d�Informatique du Parall�elisme� August ��


���� M
 Dincbas� P
 Van Hentenryck� H
 Simonis� A
 Aggoun� T
Graf� and F
 Berthier
 The constraint
logic programming language chip
 In International Conference on Fifth Generation Computer System�
Tokyo� Japan� December ��




���� M
 Dincbas� H
 Simonis� P
 Van Hentenryck� A
 Aggoun� T
 Graf� and F
 Berthier
 The constraint
logic programming language chip
 In �fth Generation Computer Systems conference� Tokyo� Japan�
Dec
 ��




���� P
 Feautrier
 Toward automatic distribution
 Parallel Processing Letters� ������������� ����


���� Paul Feautrier
 Some e�cient solution to the a�ne scheduling problem� II� multidimensional time
 Int�
J� of Parallel Programming� �������
������ December ����


���� Paul Feautrier
 Some e�cient solutions to the a�ne scheduling problem� I� one dimensional time
 Int�
J� of Parallel Programming� ������������
� October ����


���� Paul Feautrier
 Fine	grain scheduling under resource constraints
 In 
th Workshop on Language and
Compiler for Parallel Computers� August ����


���� David Foxwell and Mark Hewish
 High	performance asw at an a�ordable price
 Jane� IDR Review�
pages ������ July ����


���� R
 Govindarajan� E
 R
 Altman� and G
 R
 Gao
 A framework for ressource	constrained rate	optimal
software pipelining
 IEEE Transactions On Parallel And Distributed Systems� ���������������� Nov
����


���� Ching	Chih Han� Kwei	Jay Lin� and Chao	Ju Hou
 Distance constrained scheduling and its applications
to real	time systems
 IEEE Transactions On Computers� ������
���
��� Jul ����


��
� S
 Hiranandani� K
 Kennedy� C
 Koelbel� U
 Kremer� and C
 Tseng
 An overview of the fortran d
programming system
 In Fourth Workshop on Languages and Compilers for Parallel Computing� Santa
Clara� CA� August ����


���� F
 Irigoin
 Partitionnement de boucles imbriqu�ees� une technique d�optimisation pour les programmes
scienti�ques
 PhD thesis� Universit�e Pierre et Marie Curie� juin ��
�




���� J
 Jourdan and R
 Lissajoux
 Plc et s�equencement des vols �a l�arriv�ee
 In Proc� Transportation and
Constraint Programming� Montpellier� France� ����


���� J
 Jourdan and T
 Sola
 The versatility of handling disjunctions as constraints
 Technical Report
LACS	��	
� Thomson	CSF Central Research Lab� December ����


���� Jean Jourdan
 Concurrence et coop�eration de mod�eles multiples dans les langages de contraintes CLP et
CC � Vers une m�ethodologie de programmation par mod�elisation
 PhD thesis� Universit�e Denis Diderot�
Paris VII� ����


���� K
 Kennedy and K
 S
 McKinley
 Maximizing loop parallelism and improving data locality via loop
fusion and distribution
 In Languages and Compilers for Parallel Computing� Portland� Or
� August
����


���� K
 Knobe� J
 D
 Lukas� and G
 L
 Steele
 Data optimization� Allocation of arrays to reduce communi	
cation on SIMD machines
 J� of Parallel and Distributed Computing� 
� ����


���� C
 Koelbel� D
 Loveman� R
 Schreiber� G
 Steele� Jr
 Zosel� and M
 Zosel
 The Hight Performance
Fortran Handbook
 The MIT Press� Cambridge� MA� ����


���� U
 Kremer
 NP�completeness of dynamic remapping
 In Workshop on Compilers for Parallel Comput�
ers� Delft� pages �������� December ����


���� Ulrich Kremer
 Automatic Data Layout for Distributed Memory Machines
 PhD thesis� Rice University�
Houston� Texas� October ����
 Available as CRPC	TR��	���	S


��
� K
G
 Kumar� D
 Kulkarni� and A
 Basu
 Deriving good transformations for mapping nested loops on
hierarchical parallel machines
 In International Conference on Supercomputing� pages 
����� July ����


���� E
 A
 Lee and D
 G
 Messerschmitt
 Synchronous data�ow
 In Proceedings of the IEEE� September
��
�


���� J
 Li and M
 Chen
 The data alignment phase in compiling programs for distributed memory machines

Journal of Parallel and Distributed Computing� ����������� ����


���� A
 W
 Lim and M
 S
 Lam
 Communication	free parallelization via a�ne transformations
 In Procs of
the 
th Languages and Compilers for Parallel Computing� LNCS 
to appear�� August ����


���� M
J
 Maher
 Logic semantics for a class of committed	choice programs
 In Jean	Louis Lassez� editor�
ICLP��
� Proceedings �th International Conference on Logic Programming� pages 
�
�
��� Melbourne�
��
�
 MIT


���� Dion Mich�ele
 Alignement et distribution en parall�elisation automatique
 Th�ese informatique�
ENS�LYON� ����
 ��� P


���� P
 Murthy� S
 S
 Bhattacharyya� and E
 A
 Lee
 Minimising memory requirements for chain	structured
synchronous data�ow programs
 In Proceedings of the International Conference on Acoustics� Speech
and Signal Processing� April ������ ����


���� T
 A
 Proebsting and S
 A
 Watterson
 Filter fusion
 In Symposium on Principles of Programming
Language� ����


���� V
 Saraswat
 The concurrent logic programming language cp� Denotational and operational seman	
tics
 In Proceedings of the ��th ACM Symposium on Principles of Programming Languages� Munich�
Germany� pages ������ January ��
�


���� Gilbert C
 Sih and Edward A
 Lee
 Declustering� A new multiprocessor scheduling technique
 IEEE
Trans� on Parallel and Distributed Systems� ������������� June ����


��
� S
 Singhai and K
 McKinley
 Loop fusion for data locality and parallelism
 In Proceedings of the
Mid�Atlantic Student Workshop on Programming Languages and Systems� New Paltz� April ����


���� J
 Subhlok and Gary Vondran
 Optimal latency	troughput tradeo�s for data parallel pipelines
 In
Proc� SPAA���� Padua� Italy� June ����


���� R�emi Triolet
 Contribution �a la Parall�elisation Automatique de Programme Fortran Comportant des
appels de Proc�edures
 PhD thesis� Universit�e Paris VI� ��
�


���� P
 Van Hentenryck and Y
 Deville
 The cardinality operator� A new logical connective for constraint
logic programming
 In Koichi Furukawa� editor� ICLP��� Proceedings �th International Conference on
Logic Programming� pages �������
 MIT Press� ����


���� P
 Van Hentenryck� V
 Saraswat� and Y
 Deville
 Constraint processing in CC�FD�
 Technical report�
Brown University� ����


���� P
 Van Hentenryck� H
 Simonis� and M
 Dincbas
 Constraint satisfaction using constraint logic pro	
gramming
 Arti�cial Intelligence Journal� �
��������� ����



