Draft Version

Denotational Semantics forSSA Conversion

Sebastian Pop, Albert CohkerPierre Jouvelot, Georges-André Silber

CRI, Ecole des mines de Paris, France
TINRIA Futurs, France

{pop, jouvelot, silber}@cri.ensmp.fr, Albert.Cohen@inria.fr

Abstract

We present the first formal specification of the SSA form, derin
mediate code representation language used in most modern co
pilers such a&CC or Intel CC, and of its conversion process from
imperative languages.

More specifically, we provide (1) a denotational semantits o
theSSA, the Static Single Assignment form, (2) a collecting deno-
tational semantics for a Turing-complete imperative laggimp,

(3) a non-standard denotational semantics specifying dineer-
sion of Imp to SSA and, most importantly, (4) the proof of the con-
sistency of this transformation, showing that the struetof the
memory states manipulated by imperative constructs isspred
in compilers’ middle ends that use t88A form as control-flow
data representation. Interestingly, as an unexpectedetieal by-
product of our conversion procedure, we offer a new proafefe-
ducibility of theRAM computing model to the domain of Kleene’s
partial recursive functions, to whi5A is strongly related.

These fundamental results ensure that the widely (&®A
technology is sound. Our formal denotational frameworkhfer
suggests that th8SA form could become a target of choice for
other optimization technologies such as abstract inteapom
or partial evaluation. Indeed, since tI8&A form is language-
independent, the resulting optimizations would be autaaby
enabled for any source language supported by compilers asich
GCC.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers; F.3.Rdgics and Meanings of
Programs]: Semantics of Programming Languages—Denotational
Semantics

General Terms Languages, Theory

Keywords static single assignment, SSA, conversion, RAM model,
partial recursive functions theory

1. Introduction

Most modern and widely distributed compilers for imperatand
even some functional languages useSB@& form as an intermedi-
ate code representation formalism. This Static Singlegkssent
form [16] is based on a clear separation of control and débarira-
tion in programs. While the data model is data flow-basedhab t

[copyright notice will appear here]

no variable is assigned more than once, the control modei- tra
tionnally is graph-based, and represents basic blockedimkthin

a control-flow graph. When more than one path reaches a given
block, values may need to be merged; to preserve the fuattion
characteristics of the dataflow model, this is achieved oiaalled
¢-nodes, which assign to a new identifier two possible valdes,
pending on the incoming flow path.

If this formalism is successfully used in both academic.(e.g
GCC [8, 17], LLVM [14]) and commerciallftel CC [11]) com-
pilers, we believe its theoretical foundations are somévatking
(see Section 2 for some of the earlier attempts to formalégdee
such a framework). One of the main goals of our paper is thus to
provide what we believe to be a firmer foundation for this ubiq
tous intermediate representation format, addressing thetBSA
language itself and the conversion process used to trarigiger-
ative source code to intermedi@8A constructs.

Our approach is also practical in that we want to address one
shortcoming we see in most of the current literature onSba
form. The original motivation for the introduction gfnodes was
the conditional statements found in imperative prograngném-
guages, for which two paths need to be merged when leaving the
branches of an alternative. Thus, most of the methods-bde
placement present in the literature omit the related butesdmat
different ¢-nodes that should also logically occur after loops. In
practice this is not an issue, since most compilers’ midaigse
keep control-flow information on the side (e.g., controlfigraphs
or continuations) to deal with loop exit conditions.

It is only quite recently, in th&sCC community [21], that the
need to introduce such additiongknodes became apparent, in
particular when designing algorithms working directly aop
structures. The initial motivation for the use of these &xtodes
was mostly practical [20] since they simplified the impletation
of some code transformation techniques that requiredtinseof
new edges in thBSA graph structures. This humble beginning may
actually even explain why they were overlooked in recenteys
[3], as their role was yet not well understood at the time.

As we shall see in this paper, these “loop-clositigexpres-
sions are in fact crucial to the expressivenesS3A, providing the
key construct that boosts the computational power of thee'pu
SSA language, namely a functional dataflow language without ad-
ditional ad-hoc control-flow information, from primitivecursion
to full-fledged partial recursive functions theory. Moreavthe
structural nature of the denotational framework we use imieu
of the traditional graph-based algorithms, in which theidgion
between conditional and loop-originating edges is loskenahis
requirement even more compelling.

The structure of the paper is the following. After this irtue-
tion, we survey the related work (Section 2). In Section 3,inve
troduce ourlmp programming language, a very basic yet Turing-
complete programming language, and provide its standardtde
tional semantics. In Section 4, we formally present35é form,

2006/7/31

together with its rather straightforward and standard tiiomal
semantics. In these two sections, we use collecting traseébse-
mantics, which will be required for our later proof. In Secti5,
we show how any construct frohmp can be translated t6SA,
using a non-standard denotational semantics to speciycibr-
version process. Section 6 provides our main theorem tlwatssh
thatlmp andSSA evaluation processes preserve the consistency of
memory states. In Section 7, we discuss some consequenaas of
result, in particular the reduction 8AM programs to partial recur-
sive functions. We look at future work in Section 8 and codelin
Section 9.

2. Related Work

Since the motivation for the introduction 88A is mostly one built
out of experience stemming from the implementation of céengi

middle ends, there is scant work looking at its formal debnit
and properties. Yet, it is worth mentioning some previousktioat

offers a couple of different semantics for th8A form:

e The early papers [5, 6], which introduce the notation$6A,
mostly present informal semantics and proofs for some opti-
mization algorithms based on tBEA representation.

Kelsey [13] studies the relationship between $#$ form and

3.1 Syntax
Imp is defined by the following syntax:

Cst

Ide

Expr :=N |I | FE1 @ E»

Stmt :=1 = FE | 51;52 | while; Edo S

N~ =2
M m M m

with the usual predefined constants, identifiers and operato
Note that eachwhile loop is decorated with a number labkthat
uniquely identifies it. This labeling operation is assumedave
been performed at parsing time in a sequential manaérwhile
loops are thus numbered, say from Intgin a sequential fashion,
for identification purposes. We only require that this nunvize
preserves the sequential textual order of the program elmetst of
the paper, without loss of generality, we assume that thgranos
under study have a fixed numberof while loops.

Since theSSA semantics encodes recursive definitions of ex-
pressions in a functional manner (see Section 4), we foupakier
to define the semantics ftmp as a collecting semantics. It gathers
for each identifier and program point its value during evédune

the functional programming paradigm, providing a somewhat To keep track of such evaluation points, we use both sy.tacii
more formal view of the semantic link between these two no- iteration space information. Each statement in the programis
tions (see also [2]). He defines a non-standard semantits tha identified by a Dewey-like numbeh, € N*; these numbers can

translates programs BSA form to continuation-passing style
and back tdSSA, providing a way to compile functional lan-
guages to th&SA, and making it possible to use t88A op-
timizing technology on functional languages. In some sense
our work can be viewed as opening a new venue for this ap-
proach by formally showing that the imperative programming
paradigm can be mapped to tB8A form.

A similar semantics, based on continuations, is given by
Glesner [9]: she gives an abstract state machine semaatics f
the SSA, and uses an automatic proof checker to validate opti-
mization transformations d®SA. Yet, there is no formal proof

provided to ensure the correctness of this mapping between

ASM and SSA. We provide a different, denotational, seman-
tics for SSA and use it to prove the correctness of S®&A
conversion process for imperative programs.

All the existing definitions of th&SA form in the literature are
influenced by the early papers [6] and considerSBé& as a data
structure on top of some intermediate representation, @gtrol-

be extended aB.x, which adds a new dimension toand sets its

value toz. For instance, the top-level statement jsvhile the sec-

ond statement in a sequence of numbés h.2. The statement that
directly syntactically follows is h+, and is defined as follows:

I+ = 2
(h1)+ = h2
(h.2)+ h+

To deal with the distinct iterations of program loops, we use
iteration space vectoris their components represent the valigs
of them while loop indices at a given execution point (informally,
k collects all loop counter values). During evaluation, thesctors
are modified, and we note[a//] the vector obtained front by
replacing the value at indewith a.

To sum up, a program evaluation poiptis a pair(h, k) €
P = N* x N™ that represents a particular “run-time position”

flow graphs augmented with a stream of commands belonging to in a program by combining both a syntactic informatibnand a

some imperative language, in other words, a decoration poto
some existing compiler infrastructure. In contrast, ttaper is the
first to give a complete definition of tHeSA form, promoting the
SSA to the rank of a full-fledged language. An important aspect of
the SSA is exposed this way: thBSA is a declarative language,
which, as such and contrarily to what its name might impls ha
nothing to do with the concept of assignments, a notion oalyip
nent in imperative languages. This declarative natureagxgwhy

it is a language particularly well-suited to specify and iempent
program optimizations.

3. Imp, an Imperative Programming Language

Since we are interested in this paper by the basic principtes
derpinning theSSA conversion process, we use a very simple yet
Turing-complete imperative languadep, based on assignments,
sequences and while loops. As is well-known, conditionatest

dynamic onek, for proper localizatioR.

The only requirement on points is that they be lexicogragihjic
ordered, with the infix relatiorc € P x P — Bool such that
(hi,k1) < (hk) = (k1 < kV (kv = kA hi < h)). For any
ordered sefS, we notemax.. S the maximum element of that
is less thanx (or L if no such element exists).

3.2 Semantics

As usual, the denotational semanticslefp operates upon func-
tions f on lattices or CPOs [19]; all the domains we use thus
have al minimum element. Following a general convention, we
note fly/z] = (Aa.yif a = z, fa otherwise) andf[z/y/z] =
(Aa.Ab.zif a = x A b = y, fab otherwise) the functions that ex-

170 conform to our denotational framework, note that thisglalecoration
of the abstract syntax tree can also be specified as a dematigirocess.

ments can always be encoded by a sequence of one or two loops?intuitively, each(, k) occurs only once in a given execution trace (the

and thus need not be part of our core syntax.

ordered sequence of all states).

2006/7/31

tendsf at a given pointz. The domain off, i.e., the set of values
on which it is defined, is given aBom f = {z | f(z) # L}.

The semantics of expressions uses state§” = Ide — P —
V; a state yields for any identifier and evaluation point itewedc
value inV, a here unspecified numerical domain for the values.
The use of points gives our semantics its collecting statusome
sense, our semantics specifies traces of computation. Tensies
I[] € Expr — P — T — V expresses that dmp expression,
given a point and a state, denotes a valu® ifwe useiny as the
injection function of syntactic constants¥j :

I[N]pt = iny(N)
I[Ilpt = R<p(tI)
I[E:L @ Ex]pt = ZI[E1]pt ® Z[E:]pt

where the only unusual aspect of this definition is the use of
R<.f = f(max<, Dom f), the reaching definition on a given
function f. To obtain the current value of a given identifier, one
needs to find in the state the last program point prior to tme=atl

p atwhichI has been updated; since we use a collecting semantics,

we need to “search” the states for this last definition.

The semantics of statemer§] € Stmt - P - T — T
yields the state obtained after executing the given staieatehe
given program point, given an incoming state:

Z[I = E]pt
Z[S1; S2](h, k)

t[Z[E]pt/p/I]
I[S2](h-2, k) o I[S1] (h-1, k)

These definitions are rather straightforward extensiorestod-
ditional standard semantics to a collecting case. For agrasent,
we add a new binding of Identifidrat Pointp to the value ofF. A
sequence simply composes the transformers associatgéddad
S at their respective points.1 andh.2. And, as usual, we specify
the semantics of &hile loop as the least fixed point {iK/) of the
W functional defined as:

Z[while, E do S|(h, k) = fix(W)(h, k[0/£])
W = Aw.A(h, k).\t.

{ w(h, ke)(Z[S](h-1, k)t), if Z[E](h.1,k)t,
t, otherwise.

where, as a shorthank; is the same ak, except that the value at
index/ is incremented by one (we use latter_, with a decrement
by one).

Beginning with an iteration vector set to O for indéxif the
value of the guarding expressidt is true, we iterate thevhile
loop at an updated point, which uses the same syntactic &abel
before but an iteration space vector where the value at ihdies
been incremented, since an additional loop iteration intpglace.

If the loop test is false, we simply consider the loop as apo-o

3.3 Example

To illustrate our results, we will use a single example ragni
throughout this paper; we provide in Figure 1 this simplegpam
written in a concrete syntax thp, together with its semantics, i.e.,
its outgoing state when evaluated from an empty incoming sta

In this example, if we assume that the whole program is at
Syntactic Location 1, then the first statement is labellddwvihile
the rest of the sequence (after the first semi-column) is &t 1.
The whole labelling then proceeds recursively from thetiec&
there is only one loopy: is 1, and the iteration space vectors have
only one component, initialized to (0). Thus, for instarafeer two

I=17; I—(1.1,(0) —» 7

J=0; ML (1.2.1,(0)) — 0

while; J < 10 do I— J— (1.2.2.1’(0)) N4
J=I+ L (1.2.2.1,(1)) — 14

Figure 1. Syntax and semantics for &mp program.

loop iterations, the value of J is 14, and this will cause thapl
to terminate. The collecting nature of the semantics is giiéied

here by the fact we keep track of all values assigned to ea@bia
throughout the whole computation.

4. SSA

In the standar@SA terminology [6, 16], ar5SA graph is a graph of
def-use chains in thBSA form. Each assignment targets a unique
variable, and) nodes occur at merge points of the control flow to
restore the flow of values from the renamed variables.

Here, we replace this traditional graph-based approadh avit
programming language-based paradigm; inSB& form defined
below, the¢ assignments are capturing the characteristics of the
control flow, and the usual control-flow primitives conseuflye
become redundant. The use of this self-contained formateésod
the new ideas we provide in this paper, which paves the way to a
more formal approach to tt&SA definition, its conversion process
and its correctness.

4.1 Syntax

A program inSSA form is a set of assignments 85 A expressions
E € SSAtoSSA identifiersI;, € Idessa. These expressions are
defined as follows:

E e SSA .=
N | Iy | FE1 @ Es | |00p[¢(E17E2) | C|OS€[¢(E1,E2)

which extend the basic definitions dxzpr with two types of

¢ expressions. Note that identifiefs in an SSA expression are
elements off dessa labeled with a Dewey-like number. Since every
assignment inmp is located at a unique, this trick ensures that
no identifiers in an imperative program will ever appear aonce
converted td5SA form, thus enforcing its static single assignment
property.

Since we stated that imperative control flow primitives aoé n
part of theSSA representation, we intendedly annotated the
nodes with a label informatiof that ensures that tHeSA syntax
is self-contained and expressive enough to be equivaleanyo
imperative program syntax, as we show in the rest of this ipape
¢ nodes that merge expressions declared at different looghslep
are calledloop,¢ nodes and have a recursive semantibsse, ¢
nodes collect the values that come either from the l6op from
before the loog, when the loop trip count is zero.

More traditional¢-nodes, also called “conditional* in GCC,
are absent from our cor8SA syntax since they would only be
required to handle conditional statements, which are atfsem
the syntax oflmp; these nodes would be handled by a proper
combination ofloop¢ andclose¢ nodes.

The set of assignments representing8A program is denoted
in our framework as a finite functiom € ¥ = Idessa — SSA
mapping each identifier to its defining expression.

4.2 Semantics

The semantics of aBSA expressiorf[] € SSA — ¥ — N™ —
V provides, given a8SA expression in a program and an iteration
space vector, its value. The semantics 068A programo is thus

2006/7/31

a finite function mapping identifier§, to the semantics of their
valueso I.

We give below the denotational semantics ofS&A program
tabulated by:

E[N]ok iny(N)
Elllek = EJol]ok
E[EL @ Ez]ok E[E1]ok & E[E2]ok
eloono(mn ok = { GlPIoE AN,
S[[closeggz&(El, Ez)]]a’k = S[[Ez]]o’

klmin{z | =E[E1]ok[z/€]}/f]

Constants such as are denoted by themselves. As can be seen
from the definition for identifierg, we use the traditional syntactic
“call-by-text” approach [10] to handle the fixed point natwf an
SSA prograni.

loop,¢ nodes, by their very iterative nature, are designed to
represent the successive values of variables successilified
in imperative loop bodies, whilelose,¢ nodes compute the final
value of such induction variables in loops guarded by teptes¢
sions related tdv;.

Of course, when a loop is infinite, there is no iteration thétise
the loop, i.e., there is nb such that-£[E1]ok, and thus the set
{z | =€[Er]ok[z/€)} is empty. In such a caseyin () corresponds
to L.

4.3 Example

We informally illustrate in Figure 2 the semanticsS§A using an
SSA program intended to be similar to tthe@p program provided
in Figure 1.

Since by definitionSSA uses single assignments, we need to
use a different identifier (i.e., subscript) for each assignt to
a given identifier (see for instanc® in the Imp program. Of
course, all values are functions mapping iteraction vectora
constant. To merge the two paths reachindnip the loop body,
we use doop¢ expression to combine the initial value ofand
its successive iterated values within the loopcldse ¢ expression
“closes” the iterative function associated g to retrieve its final
value, obtained when the test expressions evaluatie$stp in this
case, this yields 14.

5. Conversion toSSA

We are now ready to specify how imperative constructs flom
can be translated 8SA expressions. We use a non-standard deno-
tational framework to specify formally this transformatiprocess.

5.1 Specification

As any denotational specification, our transformation fiems use
states. These stat#s = (u,0) € T = M x X have two
componentsy € M = Ide — N* — Idessa maps imperative
identifiers toSSA identifiers, yielding their late&SA names (these
can vary since a given identifiércan be used in more than olmep
assignment statement);€ ¥ = Idessp — SSA simply collects
theSSA definitions associated to each identifier in the imag&/of

The translation semanticy] € Expr — N* — M — SSA
for imperative expressions yields t86A code corresponding to
an imperative expression:

Sstrictly speaking, this denotational semantics is in fattoperational

one since it does not use proper structural induction fontitlers (see
[19], p.338). A strictly denotational approach could haeem defined as
a semantical fixed point on a store mapping identifiers toeslbut we
found that the current formulation leads to a more intuitia@ding of our

main theorem and proof.

7

0

loop1(J1, J3)

Jo + Iy

close; p(Jo < 10, J2)

lgﬂa

LLLbd

— A\k.7

RO
Ji(k)fork=0
= Ak, { Js(k— 1) fork >0

J3 — Ak.J2(k) + I1(k) fork >0
Jy — Mk.14

I
J1

Ja

Figure 2. Syntax and semantics gfexpressions.

C[N]hu
ClINhu
C[EL @ Ex]hp

N

R<h(:u[)
C[E1]hp & C[E2]hp

As in the standard semantics flaiip, we need to find the reaching
definition of identifiers, although this time, since this isampile-
time translation process, we only look at tyatactic order corre-
sponding to Dewey numbers.

The translation semantics of imperative statemeffp <
Stmt — N* — 7 — 7 maps conversion states to updated
conversion states. The cases for assignments and sequaeces
straightforward:

C[S1; S2]h
E]h(p, 0)

C[S2]h2 0 C[S1]h.1

clr= (ulIn/h /1), o [C[EVhp/In])

since, for sequences, conversion states are simply prtgzhdeor
assignmentsy is extended by associating to the imperative identi-
fier I the newSSA namel},, to which the converteSSA right hand
side expression is bound én thus enriching th€SA program with
a new binding forl},.

As expected, most of the work is performedaihile loops:

Clwhile; E do SJh(u, o) = 62 with
6o = (1[In.0/h.0/I1c Dom 1,
olloopyd(Rn(u), L
6, = C[S]h.160,
02 = (uy[In.2/h-2/I1eDom py 5
o1floop,¢(Ran(pl), Ren2(py1))/In.0l1e Dom py
[close¢d(C[E]R- 1141, In.0)/In.2]l1e Dom s)

)/In.olicDom u),

where we noté; = (u,;,0;). We also used the notatighy /z].cs
to represent the extension 6fto all valuesz in S with y.

As usual, the conversion process is, by induction, applied o
the loop bodyS located ath.1. Yet, this cannot be performed in
the original conversion statg:, o), since any imperative variable
could be further modified in the loop body, creating a new iigd
which would be visible at the next iteration. To deal withstlssue,

2006/7/31

a new Dewey number is introducefd.0, precedingh.1, via which
all variableé are bound tdoop¢ nodes (note that only th8SA
expressions corresponding to the control flow coming inéddlop
can be expressed at that point). It is now appropriate toarbnv
the loop body in this updated conversion state; all refexsrto
variables will be tdoop ¢ nodes, as expected.

Similarly, after the converted loop body, a new Dewey number
h.2, following k.1, is introduced to bind all variables tdose ¢
nodes that represent their values when the loop exitd (drthe
loop is infinite, as we will see). All references to any idéationce
the loop is performed are references to thelseep expressions
located ath.2, which follows, by definition of the lexicographic
order on points, all other points present in the loop.

At this time, we are able to provide the entire definition for
loop¢ expressions bound at levél0; in particular the proper
second subexpression within edobp ¢ corresponds to the value
of each identifier after one loop iteration.

5.2 Example

We find in Figure 3 the result of the conversion algorithm on
our running example; as expected, tBiSA program is the same
code as the one in Figure 2, up to the renaming of38A iden-
tifiers. Note that all control-flow information has been remad
from thelmp program, thus yielding a “pure”, self-contain88A
form, without any need for additional, on-the-side conftolv data
structure.

s aH
[
o~

“Z
IIS

I,7 — 7

Ji21 — O

o | J1.2.2.0 = loop1d(J12.1, Ji2.2.1)
Ji.2.2.1 — Ji.2.2.0 + T1a

Ji.2.2.2 — close1$(J1.2.2.0 < 10, J1.2.2.0)

Figure 3. Conversion fromimp to SSA.

6. SSA Conversion Consistency

We are finally equipped with all the material required to egsr
our main theorem. Our goal is to prove that our conversiocgss
maintains the memory states consistency between the ithgera
andSSA representations. This relationship is expressed in the fol
lowing definition:

DEFINITION 1 (Consistency)A conversion state 6 = (p,0) is
consistentwith the memory state ¢ at point p = (h, k), noted
P(0,t,p), iff

VI € Dom t,Z[I]pt = E[C[I]hu]ok

which specifies that, for any identifier, its value at a givempin
the standard semantics is the same as its value 8SAesemantics
when applied to its translat&sb A equivalent (see Figure 4).

This consistency requirement on identifiers can be strigight
wardly extended to arbitrary expressions:

41n fact, only the variables modified in the loop body need tarizmaged
this way. We do not worry about such optimization here.

Expr _Ellne, SSA
I[]](h,k)tl lS[[]]o’k
veV vey

Figure 4. Consistency propertP ((u, o), t, (h, k)).

LEMMA 1 (Consistency of Expression Conversio@iven that

P(0,t,p) and an expression £ € Expr,
I[E]pt = E[C[E)hu]ok

This directly leads to our main theorem, which ensures the
semantic correctness of the conversion process from irtipera
constructs toaSSA expressions (as a shorthand, we npte =
(h, k)+ = (h+, k)):

THEOREM1 (Consistency of Statement Conversio@jven any
statement .S and for all 6, ¢, p that verify P (6, t,p), if ' = C[S]ho
and t' = Z[S]pt, the property P(¢’,t', p+) holds.

This theorem basically states that if the consistency ptgpe
satisfied for any point before a statement, then it is alsdiedr
for the statement that syntactically follows it.

PROOF. By induction on the structure oftmt, assuming
P(8,t,p):

o for the assignmeri/ = EJ:

ClI = EJhO = (u[In/h/1), o[C[E]hu/I1]),
I[I = E]pt = t[Z[E]pt/p/I]

(W,o') =
t =

I+t = Ry (1) (defZ[])
= I[E]pt (deft’)
= E[C[E]hu]ok (Lemma 1)
= E[C[E]hu]o'k (extension ob”)
=E&[o’' I]o'k (defo’)
= &[]0’k (def &)
= E[W' Ih]o’k (def ')
=E[Rant (1’ DN]o'k (defR.)
= E[Ch+u]o'k (defc)

The extension tar’ is possible because it does not modify
the reaching definitionsR«,. So the property holds fof,
but it also trivially holds for anyl’ # I,I'’ € Dom t. So,
P(¢',t',p+) holds.

o for the sequencS;; Sa]:

Since there are no new bindings betwéeandh.1, R<, =
R_(n.1,k) and thusP(0,t, (h.1, k)) holds.

By induction, using the result of the theorem &h, with

61 = C[Si]h.16, andt; = Z[S:1](h.1,k)t, the property
P(61,t1, (h.14, k)) holds.

Sinceh.1+ = h.2, by induction, using the result of the theorem
on So, with 0 = ClISQ]]h.Qal, andtg = I[[SQ]](h.Q, k)t1, the
propertyP (02, t2, (h.2+, k)) holds.

2006/7/31

So, the propertP (6,
h.24+ = h+.

o for the loop[while, E do ST:

The recursive semantics fathile loops suggests to use fixpoint
induction ([19], p.213), but this would require us to defireswn
properties and functionals operating ¢, ¢,p) as a whole
while changing the definition aP to handle ordinals. We prefer

', p+) holds, sinc’ = 02, = t, and

to keep a simpler profile here, and give a somewhat ad-hoc but

more intuitive proof.

We will need a couple of lemmas to help us build the proof. As
a shorthand, we no#®; = (u;,0;).

LEMMA 2. With t = tg, Po = P (612, to, (h.1, k[0/£])) holds.

This lemma states that® is true at loop entry, then it remains
true just before the loop body of the first iteration, at point
(h.1,K[0/4]).

PROOFR. VI € Dom t:

TII(h1, k[0/0)t

= Ro(h.1,k070) (L)

(def7[])
= Rp(t) (deft)
=ZI[I]pt (defZ]])
= 5[[[Ihu]ok (P(0,t,p))

Ren(ul)]ok (defc])

Ren(ul)]ok[0/€]
Ren(ul)]ook[0/4]

(first iteration)
(extension targ)

e[
=¢£]
=¢£]
= E[loop,¢(R<n(pul), L)]ook[0/€] (defloop,¢)
glIO’oIh 0]]0’0]6[0/(] (dEfO'())
gﬂfh 0]]0’0]6[0/(] (dEfglﬂ])
= Epolh.0]ook[0/L] (def y)
= E[Ren1 (uoD)]ook[0/] (def R-)
= E[CITA o]0k [0/ (defc(l)

So,P(bo,t, h.1,k[0/]) holds. The extension @ to 6, con-
cludes the proof of Lemma 2. O

LEMMA 3. Let ¢, = Z[S](h.1,k[z — 1/€])tz—1. Given
Po—1 = P(b12,te—1,(h.1,klz —1/£])) for some z > 1,
then P, = P(612,t, (h.1, k[x/¢])) holds.

This second lemma ensures thaPifis true at iterationc — 1,
then it stays the same at iteratien after evaluating the loop
body. Note that the issue of whether we will indeed enter the
loop again or exit it altogether is no factor here.

PROOF. By induction, applying the theorem t§, we know
that the property

'P!E,l = P(alg, tx7 (h.2, k[m — 1/(]))

holds, sinceh.1+ = h.2, and6,2 = C[S]h.16:12, asC[] is
idempotent. We thus only need now to “go around” to the top
of the loop:

T[] (h1, klz/0)t, =

= Re(h1,k(z/0) (tT) (defZ[])
= R (h2kw—1/0) (tad) (def R<)
=ZI[I](h.2,k[z — 1/0))ts (defZ[])
= E[C[1]h-2p]o2k[z — 1/€] (Pr-1)

= E[Ren2(py I)]o2klz — 1/¢] (defCl])
= Efloop,¢p(R<n(pl), Ren.2(pyI))]o2k[z/€] (loop,¢)
= S[[azlh‘o]]azk:[:c/é] (dEfa'z)
= g[[fh,()]]O'QkJ[CC/f] (dEfglﬂ])
= E[p Th.0]o2k[z/{] (def uy)
= g[[R<h,1(p,1[)]]O'2k[1}/e] (dEfR<)
= E[C[I]h1p,]o2k[z /L] (defC[])
This concludes the proof of Lemma 3. O

We are now ready to tackle the different cases that can occur
during evaluation. These three cases are:

1. when the loop is not executed, that is when the exit con-
dition is false before entering the loop body: we know that
—Z[E]t(h.1,k[0/¢]). Based on Lemma 2, we can show that
P(¢',t',p+) holds, a®’ = 6 that extend®:-, ' = ¢ as
defined by the exit of thevhile, in Z[], andk[0/¢] = k:

I (p+)t =

= Ry (t1) (def ()
— R, (t]) (deft)

= I[I]pt (defZ[])
= &[ClI]hulok (P)

— E[Ren(ul)]ok (@eff))
= g[[R<h(p,I)]]O'2k (ext.ag)
= Efloop,d(R<n(pl), Ren.2(p,I))]o2k (defloop,¢)
= 5[[0'2[;1‘0]]0'216 (defag)
= g[[fh,()]]agk‘ (defS[[]])
= E[closecd(C[E]h.11sq, In.0)]o2k (close;)
= 5[[0'2[;1‘2]]0'216 (defag)
= g[[fh,z]]agk‘ (defS[[]])
= E[paIh.2]o2k (def)
= E[Rens (up])]o2k (def R.)
— el us]ozk (defcl)

2. when the loop is executed a finite number of times, that is
when the loop body is executed at least onceilet> 0
be the first iteration on which the loop condition becomes
false:

w = min{z | "Z[E](h.1, k[z/{])t.}

= min{z | ~E[C[E]h.1u,]o2k[z/0]} (Lemma 1)

By Lemmas 2 and 3, using induction ¢h we know that
Pl = P(b12,tw, (h.2, k[w — 1/£])) holds. We prove be-
low thatP(¢’, t.,, p+) also holds (as a shorthand, we note

2006/7/31

E™ = k[n/L):

I (p+)te =

= Rept(to1) (defZ])
= R (n.ape-1)(tw]) (defR<)
= Z[I](h.2, k" Mto, (defZ[])
= E[ClIh-2u Jo2k " (P.)

= E[Rena (i D]oak™" (defcl))
= Efloop,d(R<n(pl), Ran.2(p,I))]o2k™ (loop,¢)
= Eloalno]o2k” (defos)

= E[In.0]o2k” (def&])
= E[close;d(C[EJh. 111, In.0)]o2k (closesg)
= Elozln.2]o2k (defos)

= E[In.2]o2k (def&])
= EpsIh.2]o2k (def i)

= E[Rant(po1)]o2k (defR<)
— [T+ gk (defer)

Finally, using Kleene’s Fixed Point Theorem [19], we can
relate the least fixed point f{X/") used to define the stan-
dard semantics okhile loops and the successive iterations
W*(L) of the loop body:

t = fix(W)(h, k[0/0)t
= ilixgowi(L)(h,k[O/f])t

= WZ(L)(h, K[0/4)t
= t,

and soP(¢',t', p+) holds.
3. when the loop is infinitet! = lim; ..o W*(L)(h, k[0/¢))t =

L. Thus:
I+ L =1 = (defZ[])
= E|closecd(C[E]h-1pty, In0)]o2k (min@ = 1)
= 5“02[}1 2]]O'Qk (dEfO'Q)
= E[In.2]ozk (def&[l)
= Epylh.2]o2k (def u,)
= E[R<nt(po1)]o2k (defR<)
= E[CUTR + polo2k (defCl)

So,P(#',t', p+) holds.

thus completing the proof of our main theorem, and ensutieg t
consistency of the whol8SA conversion process. O

We are left with the simple issue of checking that state ensi
tency is satisfied for the initial states.

LEMMA 4. P(L, L, (1,0™)) holds.

PrROOF
I[I](1,0™)L =
= Re1a (L) (defZ[])
=1
= E[Rer (LD]LO™ (defR.)
= g[e[iL]Lo™ (defc[))

O
The final theorem wraps things up by showing that after evalu-
ating anSSA-converted program from consistent initial states, we
end up in states that remain consistent. Note that this reaie
even if the whole program loops.

THEOREM2. Given S € Stmt, with § = C[S]1L and ¢t =
Z[S](1,0™).L, the property P (6, ¢, (2,0™)) holds.

PROOF Trivial using Lemma 4 and Theorem 1. O

7. Discussion

Even though the initial purpose of our work is to provide a firm
foundation to the use &SA in modern compilers, our results also
yield an interesting theoretical insight on the computsigower

of SSA.

7.1 Recursive Partial Functions Theory

The mathematical wording of the Consistency Property 1 inde
lines a key aspect of th8SA conversion process. Whilg only
occurs on the left hand side of the consistency equalitysyhéac-
tic locationh and the iteration space vectbrare uncoupled in the
right-hand side expression. Thus, via 8fA conversion process,
the standard semantics gets staged, informally gettingyiad”
from Stmt — (N* x N™) - T — T to Stmt - N* —
N™ — T — T; this is also visible on Figure 4, where the pair
(h, k) is used on the left arrow, while andk occur separately on
the top and on the right arrows. This perspective changethera
profound, since it uncouples syntactic sequencing fromtiue
iteration space sequencing.

There exists a formal computing model that is particulargilw
suited to describing iteration behaviors, namely Kleetteory of
partial recursive functions [19]. In fact, tHESA appears to be a
syntactic variant of such a formalism. We provide below ariting
K] of SSA bindings to recursive function definitions.

First, to eactsSA identifierI, we associate a functiaf(%), and
translate any6SA expression involving neithdoop¢ nor close¢
node$ as function calls:

K[N]k = N
K[k = I(k)
K[E: @ Eo]k = ®(E[E1]k, E[E2]k)

Then, to collect partial recursive function definitions reer
sponding to arbSA programo, we simply gather all the defini-
tions for each bindind,J, p,,,,., , 1, oI]. Informally, forloop¢
expressions, we simply rewrite the two cases correspontting
their standard semantics. Fdbse¢ expressions, we add an an-
cillary function that computes the minimum value (if any)tbé
loop counter corresponding to the number of iterations iredqu
to compute the final value, and plug it into the final exprassio

5Without loss of generality, we assume tigaodes only occur as top-level
expression constructors.

2006/7/31

This is formally defined as follows, using, , as a shorthand for
kIN kP+17 ey kqfh kq:

K[I,loop,p(Er, E2)]k =
{I(k1,6-1,0,ker1,m) = K[E1](k1,6-1,0, ker1,m),
I(k1,e—1,2 4+ 1, key1,m) = K[E2](k1,0-1, %, ket1,m) }
K[, closec¢p(E1, E2)]k =
{mins(k1,e—1, ket1,m) =
(ny K[E1] (k1 e—1, Y, kev1,m) = 0),
I(k) = K[E2](k1,e—1,minr (k1,e—1, ket1,m), ket1,m)}
K[1, E]k = {I(k) = K[E]k}

wherey is Kleene's minimization operator. We also assumed that
boolean values are coded as integéatsé is 0).

7.2 Example

As an example of this transformation to partial recursivections,

we provide below the translation of our running example (see
Figure 5) into partial recursive functions. For increaseatiability,

we renamed variables to use shorter indices.

I1(k21) =7

Jl(kl) =0

J2(0) = J1(0)

JQ(:B + 1) = JS(:B)

J3(k1) = +(J2(k1), 1 (k1))
ming, () = (ny. < (J2(y),10) = 0)
J4(k1) = J2(ming, ())

Figure 5. Partial recursive functions example.

Our conversion process frotmp to SSA can thus be seen as
a way of converting anjRAM program [12] to a set of Kleene’s
partial recursive functions, thus providing a new proof afifig’s
Equivalence Theorem between these two computational model
previously typically proven using simulation [12].

8. Future Work

We looked in this paper at tHenp-to-SSA conversion process. A
natural dual problem of course arises, namely the so-callatsof-
SSA”[6, 4, 18] issue: a way of prettyprintin§SA programs using
typical, imperative-like programming language syntaxrsasimp.
This is of utmost importance when one considers for instdnee
issues of debugging or code generation. In GCC, this is et
using a graph algorithm [7] operating on the control-flowadat
structure decorated with th&SA annotations used in its middle
end.

For our approach, this technique could also be used in a simi-
lar fashion, assuming we kept around the control-flow grapmf
which ourSSA code has been generated. A more intriguing ques-
tion is whether such an out-&A Imp code generator could be
designed using only our self-contain€8A syntax. In a perfect
world, one would indeed want to get back the origitrap code
from which SSA has been generated. This requires reconstructing
the while loop structure using data dependence witht code,
together with an intelligent ordering of code generationdach
binding ino to minimize code duplication.

9. Conclusion

We presented the first denotational specifications of bathst
mantics ofSSA and of its conversion process from a core impera-
tive programming languag&SA is the central control-flow inter-
mediate representation format used in the middle ends oemod
compilers such a&§CC or Intel CC that target multiple source lan-
guages. Yet, there is surprisingly very limited work studyithe
formal properties of this central data representationrtiegte.

Our main theorem proves that standard semantics is preserve
after the transformation of imperative programs to tiSA in-
termediate forms. As a by-product, it provides another c&do
proof for theRAM computational model to Kleene’s partial recur-
sive functions theory.

Since our results ensure the correctness of the translpteon
cess of all imperative programs $&A, they pave the way to addi-
tional research from the programming language commurutynf
stance for optimization purposes, which would directlg&a6SA
instead of source languages. UsBfA as the language of interest
for such endeavors would ensure the portability of the tiegphl-
gorithms (see [1] for some examples) to all programming laiggs
supported byGCC or other similar compilers. This applies to both
imperative or object-oriented programming languagesh(siscC or
Java viaGCC) or functional ones (such as Erlang via HiPE [15]).

Acknowledgments

The authors thank Neil Jones for his help regarding KlegperSal
recursive functions theory, Ken Zadeck for his remarks:lose ¢
nodes and Francois Irigoin for his suggestions.

References

[1] A. W. Appel. Modern Compiler Implementation.
University Press, 1998.

[2] A. W. Appel. SSA is functional programmingS GPLAN Not.,
33(4):17-20, 1998.

[3] G. Bilardi and K. Pingali. Algorithms for computing théasic single
assignment formJ. ACM, 50(3):375-425, 2003.

[4] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpsonadgcal
improvements to the construction and destruction of skitigle
assignment formSoftware Practice and Experience, 28(8):859-881,
1998.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. An efficient method of computing static single assignt
form. In POPL ' 89: Proceedings of the 16th ACM SSIGPLAN-S GACT
symposium on Principles of programming languages, pages 25-35,
New York, NY, USA, 1989. ACM Press.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and Zadeck.
Efficiently computing static single assignment form and ¢batrol

dependence graphACM Trans. on Programming Languages and
Systems, 13(4):451-490, Oct. 1991.

[7] GCC implementation of “out of SSA”.http://gcc.gnu.org/
viewcvs/trunk/gcc/tree-outof-ssa.c.

Cambridge

5

—_

[6

—

[8] The GNU Compiler Collectionhttp://gcc.gnu.org.

[9] S. Glesner. An ASM semantics for SSA intermediate regméegtions.
In Proceedings of the 11th International Workshop on Abstract State
Machines. Springer Verlag, Lecture Notes in Computer Science, May
2004.

[10] M. J. C. Gordon. The denotational description of programming
languages. Springer Verlag, 1979.

[11] Intel compilers.http://intel.com/.

[12] N. D. Jones.Computability and complexity: from a programming
perspective. MIT Press, Cambridge, MA, USA, 1997.

2006/7/31

[13] R. A. Kelsey. A correspondence between continuatiossipg style
and static single assignment fordCM S GPLAN Notices, 30(3):13—
22,1995.

[14] C. Lattner and V. Adve. LLVM: A compilation framework fo
lifelong program analysis & transformation. ACM Conf. on Code
Generation and Optimization (CGO’'04), Palo Alto, California, Mar.
2004.

[15] D. Luna, M. Pettersson, and K. Sagonas. Efficiently ctinppa
functional language on AMD64: the HiIPE experience PRDP ’05:
Proceedings of the 7th ACM S GPLAN international conference on
Principles and practice of declarative programming, pages 176-186,
New York, NY, USA, 2005. ACM Press.

[16] S. S. Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufmann, 1997.

[17] S. Pop, A. Cohen, and G.-A. Silber. Induction variabhalgsis with
delayed abstractions. Imtl. Conf. on High Performance Embedded
Architectures and Compilers (HIPEAC' 05), number 3793 in LNCS,
pages 218-232, Barcelona, Spain, Nov. 2005. Springeadyerl

[18] V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santuan
Translating out of static single assignment form. SAS '99:
Proceedings of the 6th International Symposium on Satic Analysis,
pages 194-210, London, UK, 1999. Springer-Verlag.

[19] J. E. Stoy. Denotational Semantics: the Scott-Strachey Approach to
Programming Languages Theory. MIT Press, 1977.

[20] F. K. Zadeck. Loop closed SSA form. Personal commuitoat

[21] F. K. Zadeck. Static single assignment form, 2004 GC@ it
keynote.http://naturalbridge.com/GCC2004Summit . pdf.

2006/7/31

