
Draft Version

Denotational Semantics forSSA Conversion

Sebastian Pop, Albert Cohen†, Pierre Jouvelot, Georges-André Silber

CRI, École des mines de Paris, France
†INRIA Futurs, France

{pop, jouvelot, silber}@cri.ensmp.fr, Albert.Cohen@inria.fr

Abstract
We present the first formal specification of the SSA form, an inter-
mediate code representation language used in most modern com-
pilers such asGCC or Intel CC, and of its conversion process from
imperative languages.

More specifically, we provide (1) a denotational semantics of
theSSA, the Static Single Assignment form, (2) a collecting deno-
tational semantics for a Turing-complete imperative languageImp,
(3) a non-standard denotational semantics specifying the conver-
sion ofImp to SSA and, most importantly, (4) the proof of the con-
sistency of this transformation, showing that the structure of the
memory states manipulated by imperative constructs is preserved
in compilers’ middle ends that use theSSA form as control-flow
data representation. Interestingly, as an unexpected theoretical by-
product of our conversion procedure, we offer a new proof of the re-
ducibility of theRAM computing model to the domain of Kleene’s
partial recursive functions, to whichSSA is strongly related.

These fundamental results ensure that the widely usedSSA
technology is sound. Our formal denotational framework further
suggests that theSSA form could become a target of choice for
other optimization technologies such as abstract interpretation
or partial evaluation. Indeed, since theSSA form is language-
independent, the resulting optimizations would be automatically
enabled for any source language supported by compilers suchas
GCC.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—Denotational
Semantics

General Terms Languages, Theory

Keywords static single assignment, SSA, conversion, RAM model,
partial recursive functions theory

1. Introduction
Most modern and widely distributed compilers for imperative and
even some functional languages use theSSA form as an intermedi-
ate code representation formalism. This Static Single Assignment
form [16] is based on a clear separation of control and data informa-
tion in programs. While the data model is data flow-based, so that

[copyright notice will appear here]

no variable is assigned more than once, the control model tradi-
tionnally is graph-based, and represents basic blocks linked within
a control-flow graph. When more than one path reaches a given
block, values may need to be merged; to preserve the functional
characteristics of the dataflow model, this is achieved via so-called
φ-nodes, which assign to a new identifier two possible values,de-
pending on the incoming flow path.

If this formalism is successfully used in both academic (e.g.,
GCC [8, 17], LLVM [14]) and commercial (Intel CC [11]) com-
pilers, we believe its theoretical foundations are somewhat lacking
(see Section 2 for some of the earlier attempts to formally describe
such a framework). One of the main goals of our paper is thus to
provide what we believe to be a firmer foundation for this ubiqui-
tous intermediate representation format, addressing boththe SSA
language itself and the conversion process used to translate imper-
ative source code to intermediateSSA constructs.

Our approach is also practical in that we want to address one
shortcoming we see in most of the current literature on theSSA
form. The original motivation for the introduction ofφ-nodes was
the conditional statements found in imperative programming lan-
guages, for which two paths need to be merged when leaving the
branches of an alternative. Thus, most of the methods ofφ-node
placement present in the literature omit the related but somewhat
different φ-nodes that should also logically occur after loops. In
practice this is not an issue, since most compilers’ middle ends
keep control-flow information on the side (e.g., control-flow graphs
or continuations) to deal with loop exit conditions.

It is only quite recently, in theGCC community [21], that the
need to introduce such additionalφ-nodes became apparent, in
particular when designing algorithms working directly on loop
structures. The initial motivation for the use of these extra nodes
was mostly practical [20] since they simplified the implementation
of some code transformation techniques that required insertion of
new edges in theSSA graph structures. This humble beginning may
actually even explain why they were overlooked in recent surveys
[3], as their role was yet not well understood at the time.

As we shall see in this paper, these “loop-closingφ” expres-
sions are in fact crucial to the expressiveness ofSSA, providing the
key construct that boosts the computational power of the “pure”
SSA language, namely a functional dataflow language without ad-
ditional ad-hoc control-flow information, from primitive recursion
to full-fledged partial recursive functions theory. Moreover, the
structural nature of the denotational framework we use herein lieu
of the traditional graph-based algorithms, in which the distinction
between conditional and loop-originating edges is lost, makes this
requirement even more compelling.

The structure of the paper is the following. After this introduc-
tion, we survey the related work (Section 2). In Section 3, wein-
troduce ourImp programming language, a very basic yet Turing-
complete programming language, and provide its standard denota-
tional semantics. In Section 4, we formally present theSSA form,

1 2006/7/31

together with its rather straightforward and standard denotational
semantics. In these two sections, we use collecting trace-based se-
mantics, which will be required for our later proof. In Section 5,
we show how any construct fromImp can be translated toSSA,
using a non-standard denotational semantics to specify this con-
version process. Section 6 provides our main theorem that shows
that Imp andSSA evaluation processes preserve the consistency of
memory states. In Section 7, we discuss some consequences ofour
result, in particular the reduction ofRAM programs to partial recur-
sive functions. We look at future work in Section 8 and conclude in
Section 9.

2. Related Work
Since the motivation for the introduction ofSSA is mostly one built
out of experience stemming from the implementation of compilers’
middle ends, there is scant work looking at its formal definition
and properties. Yet, it is worth mentioning some previous work that
offers a couple of different semantics for theSSA form:

• The early papers [5, 6], which introduce the notation forSSA,
mostly present informal semantics and proofs for some opti-
mization algorithms based on theSSA representation.

• Kelsey [13] studies the relationship between theSSA form and
the functional programming paradigm, providing a somewhat
more formal view of the semantic link between these two no-
tions (see also [2]). He defines a non-standard semantics that
translates programs inSSA form to continuation-passing style
and back toSSA, providing a way to compile functional lan-
guages to theSSA, and making it possible to use theSSA op-
timizing technology on functional languages. In some sense,
our work can be viewed as opening a new venue for this ap-
proach by formally showing that the imperative programming
paradigm can be mapped to theSSA form.

• A similar semantics, based on continuations, is given by
Glesner [9]: she gives an abstract state machine semantics for
theSSA, and uses an automatic proof checker to validate opti-
mization transformations onSSA. Yet, there is no formal proof
provided to ensure the correctness of this mapping between
ASM and SSA. We provide a different, denotational, seman-
tics for SSA and use it to prove the correctness of theSSA
conversion process for imperative programs.

All the existing definitions of theSSA form in the literature are
influenced by the early papers [6] and consider theSSA as a data
structure on top of some intermediate representation, e.g., control-
flow graphs augmented with a stream of commands belonging to
some imperative language, in other words, a decoration on top of
some existing compiler infrastructure. In contrast, this paper is the
first to give a complete definition of theSSA form, promoting the
SSA to the rank of a full-fledged language. An important aspect of
the SSA is exposed this way: theSSA is a declarative language,
which, as such and contrarily to what its name might imply, has
nothing to do with the concept of assignments, a notion only perti-
nent in imperative languages. This declarative nature explains why
it is a language particularly well-suited to specify and implement
program optimizations.

3. Imp, an Imperative Programming Language
Since we are interested in this paper by the basic principlesun-
derpinning theSSA conversion process, we use a very simple yet
Turing-complete imperative language,Imp, based on assignments,
sequences and while loops. As is well-known, conditional state-
ments can always be encoded by a sequence of one or two loops,
and thus need not be part of our core syntax.

3.1 Syntax

Imp is defined by the following syntax:

N ∈ Cst

I ∈ Ide

E ∈ Expr ::= N | I | E1 ⊕ E2

S ∈ Stmt ::= I = E | S1; S2 | whileℓ E do S

with the usual predefined constants, identifiers and operators ⊕.
Note that eachwhile loop is decorated with a number labelℓ that
uniquely identifies it. This labeling operation is assumed to have
been performed at parsing time in a sequential manner1; all while
loops are thus numbered, say from 1 tom, in a sequential fashion,
for identification purposes. We only require that this numbering
preserves the sequential textual order of the program. In the rest of
the paper, without loss of generality, we assume that the programs
under study have a fixed numberm of while loops.

Since theSSA semantics encodes recursive definitions of ex-
pressions in a functional manner (see Section 4), we found iteasier
to define the semantics forImp as a collecting semantics. It gathers
for each identifier and program point its value during evaluation.
To keep track of such evaluation points, we use both syntactic and
iteration space information. Each statement in the programtree is
identified by a Dewey-like number,h ∈ N∗; these numbers can
be extended ash.x, which adds a new dimension toh and sets its
value tox. For instance, the top-level statement is1, while the sec-
ond statement in a sequence of numberh is h.2. The statement that
directly syntactically followsh is h+, and is defined as follows:

1+ = 2

(h.1)+ = h.2

(h.2)+ = h +

To deal with the distinct iterations of program loops, we use
iteration space vectorsk: their components represent the valueskℓ

of them while loop indices at a given execution point (informally,
k collects all loop counter values). During evaluation, these vectors
are modified, and we notek[a/ℓ] the vector obtained fromk by
replacing the value at indexℓ with a.

To sum up, a program evaluation pointp is a pair (h, k) ∈
P = N∗ × Nm that represents a particular “run-time position”
in a program by combining both a syntactic information,h, and a
dynamic one,k, for proper localization.2

The only requirement on points is that they be lexicographically
ordered, with the infix relation< ∈ P × P → Bool such that
(h1, k1) < (h, k) = (k1 < k ∨ (k1 = k ∧ h1 < h)). For any
ordered setS, we notemax<x S the maximum element ofS that
is less thanx (or⊥ if no such element exists).

3.2 Semantics

As usual, the denotational semantics ofImp operates upon func-
tions f on lattices or CPOs [19]; all the domains we use thus
have a⊥ minimum element. Following a general convention, we
notef [y/x] = (λa.y if a = x, fa otherwise) andf [z/y/x] =
(λa.λb.z if a = x ∧ b = y, fab otherwise) the functions that ex-

1 To conform to our denotational framework, note that this global decoration
of the abstract syntax tree can also be specified as a denotational process.
2 Intuitively, each(h, k) occurs only once in a given execution trace (the
ordered sequence of all states).

2 2006/7/31

tendsf at a given pointx. The domain off , i.e., the set of values
on which it is defined, is given asDom f = {x | f(x) 6= ⊥}.

The semantics of expressions uses statest ∈ T = Ide → P →
V; a state yields for any identifier and evaluation point its numeric
value inV , a here unspecified numerical domain for the values.
The use of points gives our semantics its collecting status;in some
sense, our semantics specifies traces of computation. The semantics
I[[]] ∈ Expr → P → T → V expresses that anImp expression,
given a point and a state, denotes a value inV (we useinV as the
injection function of syntactic constants inV) :

I[[N]]pt = inV (N)

I[[I]]pt = R<p(tI)

I[[E1 ⊕ E2]]pt = I[[E1]]pt ⊕ I[[E2]]pt

where the only unusual aspect of this definition is the use of
R<xf = f(max<x Dom f), the reaching definition on a given
function f . To obtain the current value of a given identifier, one
needs to find in the state the last program point prior to the current
p at whichI has been updated; since we use a collecting semantics,
we need to “search” the states for this last definition.

The semantics of statementsI[[]] ∈ Stmt → P → T → T
yields the state obtained after executing the given statement at the
given program point, given an incoming state:

I[[I = E]]pt = t[I[[E]]pt/p/I]

I[[S1; S2]](h, k) = I[[S2]](h.2, k) ◦ I[[S1]](h.1, k)

These definitions are rather straightforward extensions ofa tra-
ditional standard semantics to a collecting case. For an assignment,
we add a new binding of IdentifierI at Pointp to the value ofE. A
sequence simply composes the transformers associated toS1 and
S2 at their respective pointsh.1 andh.2. And, as usual, we specify
the semantics of awhile loop as the least fixed point fix(W) of the
W functional defined as:

I[[whileℓ E do S]](h, k) = fix(W)(h, k[0/ℓ])

W = λw.λ(h, k).λt.


w(h, kℓ+)(I[[S]](h.1, k)t), if I[[E]](h.1, k)t,
t, otherwise.

where, as a shorthand,kℓ+ is the same ask, except that the value at
indexℓ is incremented by one (we use latterkℓ−, with a decrement
by one).

Beginning with an iteration vector set to 0 for indexℓ, if the
value of the guarding expressionE is true, we iterate thewhile
loop at an updated point, which uses the same syntactic labelas
before but an iteration space vector where the value at indexℓ has
been incremented, since an additional loop iteration is taking place.
If the loop test is false, we simply consider the loop as a no-op.

3.3 Example

To illustrate our results, we will use a single example running
throughout this paper; we provide in Figure 1 this simple program
written in a concrete syntax ofImp, together with its semantics, i.e.,
its outgoing state when evaluated from an empty incoming state.

In this example, if we assume that the whole program is at
Syntactic Location 1, then the first statement is labelled 1.1 while
the rest of the sequence (after the first semi-column) is at 1.2.
The whole labelling then proceeds recursively from there. Since
there is only one loop,m is 1, and the iteration space vectors have
only one component, initialized to (0). Thus, for instance,after two

I = 7;
J = 0;

while1 J < 10 do
J = J + I;

I[[]]1⊥
−−−−→

I→ (1.1, (0)) → 7

J→

8

<

:

(1.2.1, (0)) → 0
(1.2.2.1, (0)) → 7
(1.2.2.1, (1)) → 14

Figure 1. Syntax and semantics for anImp program.

loop iterations, the value of J is 14, and this will cause the loop
to terminate. The collecting nature of the semantics is exemplified
here by the fact we keep track of all values assigned to each variable
throughout the whole computation.

4. SSA

In the standardSSA terminology [6, 16], anSSA graph is a graph of
def-use chains in theSSA form. Each assignment targets a unique
variable, andφ nodes occur at merge points of the control flow to
restore the flow of values from the renamed variables.

Here, we replace this traditional graph-based approach with a
programming language-based paradigm; in theSSA form defined
below, theφ assignments are capturing the characteristics of the
control flow, and the usual control-flow primitives consequently
become redundant. The use of this self-contained format is one of
the new ideas we provide in this paper, which paves the way to a
more formal approach to theSSA definition, its conversion process
and its correctness.

4.1 Syntax

A program inSSA form is a set of assignments ofSSA expressions
E ∈ SSA to SSA identifiersIh ∈ IdeSSA. These expressions are
defined as follows:

E ∈ SSA ::=

N | Ih | E1 ⊕ E2 | loopℓφ(E1, E2) | closeℓφ(E1, E2)

which extend the basic definitions ofExpr with two types of
φ expressions. Note that identifiersIh in an SSA expression are
elements ofIdeSSA labeled with a Dewey-like number. Since every
assignment inImp is located at a uniqueh, this trick ensures that
no identifiers in an imperative program will ever appear twice once
converted toSSA form, thus enforcing its static single assignment
property.

Since we stated that imperative control flow primitives are not
part of theSSA representation, we intendedly annotated theφ
nodes with a label informationℓ that ensures that theSSA syntax
is self-contained and expressive enough to be equivalent toany
imperative program syntax, as we show in the rest of this paper.
φ nodes that merge expressions declared at different loop depths
are calledloopℓφ nodes and have a recursive semantics.closeℓφ
nodes collect the values that come either from the loopℓ or from
before the loopℓ, when the loop trip count is zero.

More traditionalφ-nodes, also called “conditional-φ” in GCC,
are absent from our coreSSA syntax since they would only be
required to handle conditional statements, which are absent from
the syntax ofImp; these nodes would be handled by a proper
combination ofloopφ andcloseφ nodes.

The set of assignments representing anSSA program is denoted
in our framework as a finite functionσ ∈ Σ = IdeSSA → SSA
mapping each identifier to its defining expression.

4.2 Semantics

The semantics of anSSA expressionE [[]] ∈ SSA → Σ → Nm →
V provides, given anSSA expression in a program and an iteration
space vector, its value. The semantics of anSSA programσ is thus

3 2006/7/31

a finite function mapping identifiersIh to the semantics of their
valuesσIh.

We give below the denotational semantics of anSSA program
tabulated byσ:

E [[N]]σk = inV(N)

E [[I]]σk = E [[σI]]σk

E [[E1 ⊕ E2]]σk = E [[E1]]σk ⊕ E [[E2]]σk

E [[loopℓφ(E1, E2)]]σk =



E [[E1]]σk, if kℓ = 0,
E [[E2]]σkℓ−, otherwise.

E [[closeℓφ(E1, E2)]]σk = E [[E2]]σ

k[min{x | ¬E [[E1]]σk[x/ℓ]}/ℓ]

Constants such asN are denoted by themselves. As can be seen
from the definition for identifiersI , we use the traditional syntactic
“call-by-text” approach [10] to handle the fixed point nature of an
SSA program3.

loopℓφ nodes, by their very iterative nature, are designed to
represent the successive values of variables successivelymodified
in imperative loop bodies, whilecloseℓφ nodes compute the final
value of such induction variables in loops guarded by test expres-
sions related toE1.

Of course, when a loop is infinite, there is no iteration that exits
the loop, i.e., there is nok such that¬E [[E1]]σk, and thus the set
{x | ¬E [[E1]]σk[x/ℓ]} is empty. In such a case,min ∅ corresponds
to⊥.

4.3 Example

We informally illustrate in Figure 2 the semantics ofSSA using an
SSA program intended to be similar to theImp program provided
in Figure 1.

Since by definitionSSA uses single assignments, we need to
use a different identifier (i.e., subscript) for each assignment to
a given identifier (see for instanceJ) in the Imp program. Of
course, all values are functions mapping iteraction vectors to a
constant. To merge the two paths reaching inImp the loop body,
we use aloopφ expression to combine the initial value ofJ and
its successive iterated values within the loop. Acloseφ expression
“closes” the iterative function associated toJ2 to retrieve its final
value, obtained when the test expressions evaluates tofalse; in this
case, this yields 14.

5. Conversion toSSA

We are now ready to specify how imperative constructs fromImp
can be translated toSSA expressions. We use a non-standard deno-
tational framework to specify formally this transformation process.

5.1 Specification

As any denotational specification, our transformation functions use
states. These statesθ = (µ, σ) ∈ T = M × Σ have two
components:µ ∈ M = Ide → N∗ → IdeSSA maps imperative
identifiers toSSA identifiers, yielding their latestSSA names (these
can vary since a given identifierI can be used in more than oneImp
assignment statement);σ ∈ Σ = IdeSSA → SSA simply collects
theSSA definitions associated to each identifier in the image ofM .

The translation semanticsC[[]] ∈ Expr → N∗ → M → SSA
for imperative expressions yields theSSA code corresponding to
an imperative expression:

3 Strictly speaking, this denotational semantics is in fact an operational
one since it does not use proper structural induction for identifiers (see
[19], p.338). A strictly denotational approach could have been defined as
a semantical fixed point on a store mapping identifiers to values, but we
found that the current formulation leads to a more intuitivewording of our
main theorem and proof.

σ:

I1 → 7
J1 → 0

J2 → loop1φ(J1, J3)
J3 → J2 + I1
J4 → close1φ(J2 < 10, J2)

?

?

y
E [[]]σ

I1 → λk.7

J1 → λk.0

J2 → λk.



J1(k) for k = 0
J3(k − 1) for k > 0

J3 → λk.J2(k) + I1(k) for k ≥ 0

J4 → λk.14

Figure 2. Syntax and semantics ofφ expressions.

C[[N]]hµ = N

C[[I]]hµ = R<h(µI)

C[[E1 ⊕ E2]]hµ = C[[E1]]hµ ⊕ C[[E2]]hµ

As in the standard semantics forImp, we need to find the reaching
definition of identifiers, although this time, since this is acompile-
time translation process, we only look at thesyntactic order corre-
sponding to Dewey numbers.

The translation semantics of imperative statementsC[[]] ∈
Stmt → N∗ → T → T maps conversion states to updated
conversion states. The cases for assignments and sequencesare
straightforward:

C[[S1; S2]]h = C[[S2]]h.2 ◦ C[[S1]]h.1

C[[I = E]]h(µ, σ) = (µ[Ih/h/I], σ[C[[E]]hµ/Ih])

since, for sequences, conversion states are simply propagated. For
assignments,µ is extended by associating to the imperative identi-
fier I the newSSA nameIh, to which the convertedSSA right hand
side expression is bound inσ, thus enriching theSSA program with
a new binding forIh.

As expected, most of the work is performed inwhile loops:

C[[whileℓ E do S]]h(µ, σ) = θ2 with

θ0 = (µ[Ih.0/h.0/I]I∈Dom µ,

σ[loopℓφ(R<h(µI),⊥)/Ih.0]I∈Dom µ),

θ1 = C[[S]]h.1θ0,

θ2 = (µ1[Ih.2/h.2/I]I∈Dom µ1
,

σ1[loopℓφ(R<h(µI),R<h.2(µ1I))/Ih.0]I∈Dom µ1

[closeℓφ(C[[E]]h.1µ1, Ih.0)/Ih.2]I∈Dom µ1
)

where we noteθi = (µi, σi). We also used the notationf [y/x]x∈S

to represent the extension off to all valuesx in S with y.
As usual, the conversion process is, by induction, applied on

the loop bodyS located ath.1. Yet, this cannot be performed in
the original conversion state(µ, σ), since any imperative variable
could be further modified in the loop body, creating a new binding
which would be visible at the next iteration. To deal with this issue,

4 2006/7/31

a new Dewey number is introduced,h.0, precedingh.1, via which
all variables4 are bound toloopφ nodes (note that only theSSA
expressions corresponding to the control flow coming into the loop
can be expressed at that point). It is now appropriate to convert
the loop body in this updated conversion state; all references to
variables will be toloopφ nodes, as expected.

Similarly, after the converted loop body, a new Dewey number,
h.2, following h.1, is introduced to bind all variables tocloseφ
nodes that represent their values when the loop exits (or⊥ if the
loop is infinite, as we will see). All references to any identifier once
the loop is performed are references to thesecloseφ expressions
located ath.2, which follows, by definition of the lexicographic
order on points, all other points present in the loop.

At this time, we are able to provide the entire definition for
loopφ expressions bound at levelh.0; in particular the proper
second subexpression within eachloopφ corresponds to the value
of each identifier after one loop iteration.

5.2 Example

We find in Figure 3 the result of the conversion algorithm on
our running example; as expected, thisSSA program is the same
code as the one in Figure 2, up to the renaming of theSSA iden-
tifiers. Note that all control-flow information has been removed
from theImp program, thus yielding a “pure”, self-containedSSA
form, without any need for additional, on-the-side control-flow data
structure.

I = 7;
J = 0;
while1 J < 10 do

J = J + I;

?

?

y
C[[]]1⊥

σ:

I1.1 → 7
J1.2.1 → 0

J1.2.2.0 → loop1φ(J1.2.1, J1.2.2.1)
J1.2.2.1 → J1.2.2.0 + I1.1

J1.2.2.2 → close1φ(J1.2.2.0 < 10, J1.2.2.0)

Figure 3. Conversion fromImp to SSA.

6. SSA Conversion Consistency
We are finally equipped with all the material required to express
our main theorem. Our goal is to prove that our conversion process
maintains the memory states consistency between the imperative
andSSA representations. This relationship is expressed in the fol-
lowing definition:

DEFINITION 1 (Consistency).A conversion state θ = (µ, σ) is
consistentwith the memory state t at point p = (h, k), noted
P(θ, t, p), iff

∀I ∈ Dom t, I[[I]]pt = E [[C[[I]]hµ]]σk

which specifies that, for any identifier, its value at a given point in
the standard semantics is the same as its value in theSSA semantics
when applied to its translatedSSA equivalent (see Figure 4).

This consistency requirement on identifiers can be straightfor-
wardly extended to arbitrary expressions:

4 In fact, only the variables modified in the loop body need to bemanaged
this way. We do not worry about such optimization here.

Expr
C[[]]hµ

−−−−−→ SSA

I[[]](h,k)t

?

?

y

?

?

y

E[[]]σk

v ∈ V v ∈ V

Figure 4. Consistency propertyP((µ, σ), t, (h, k)).

LEMMA 1 (Consistency of Expression Conversion).Given that
P(θ, t, p) and an expression E ∈ Expr,

I[[E]]pt = E [[C[[E]]hµ]]σk

This directly leads to our main theorem, which ensures the
semantic correctness of the conversion process from imperative
constructs toSSA expressions (as a shorthand, we notep+ =
(h, k)+ = (h+, k)):

THEOREM1 (Consistency of Statement Conversion).Given any
statement S and for all θ, t, p that verify P(θ, t, p), if θ′ = C[[S]]hθ
and t′ = I[[S]]pt, the property P(θ′, t′, p+) holds.

This theorem basically states that if the consistency property is
satisfied for any point before a statement, then it is also verified
for the statement that syntactically follows it.

PROOF. By induction on the structure ofStmt, assuming
P(θ, t, p):

• for the assignment[[I = E]]:

(µ′, σ′) = C[[I = E]]hθ = (µ[Ih/h/I], σ[C[[E]]hµ/Ih]),

t′ = I[[I = E]]pt = t[I[[E]]pt/p/I]

I[[I]]p+t′ = R<p+(t′I) (defI[[]])

= I[[E]]pt (def t′)

= E [[C[[E]]hµ]]σk (Lemma 1)

= E [[C[[E]]hµ]]σ′k (extension ofσ′)

= E [[σ′Ih]]σ′k (defσ′)

= E [[Ih]]σ′k (defE [[]])

= E [[µ′Ih]]σ′k (defµ′)

= E [[R<h+(µ′I)]]σ′k (defR<)

= E [[C[[I]]h+µ′]]σ′k (defC[[]])

The extension toσ′ is possible because it does not modify
the reaching definitions:R<p. So the property holds forI ,
but it also trivially holds for anyI ′ 6= I, I ′ ∈ Dom t. So,
P(θ′, t′, p+) holds.

• for the sequence[[S1; S2]]:

Since there are no new bindings betweenh andh.1, R<p =
R<(h.1,k) and thusP(θ, t, (h.1, k)) holds.

By induction, using the result of the theorem onS1, with
θ1 = C[[S1]]h.1θ, and t1 = I[[S1]](h.1, k)t, the property
P(θ1, t1, (h.1+, k)) holds.

Sinceh.1+ = h.2, by induction, using the result of the theorem
on S2, with θ2 = C[[S2]]h.2θ1, andt2 = I[[S2]](h.2, k)t1, the
propertyP(θ2, t2, (h.2+, k)) holds.

5 2006/7/31

So, the propertyP(θ′, t′, p+) holds, sinceθ′ = θ2, t
′ = t2 and

h.2+ = h+.

• for the loop[[whileℓ E do S]]:

The recursive semantics forwhile loops suggests to use fixpoint
induction ([19], p.213), but this would require us to define new
properties and functionals operating on(θ, t, p) as a whole
while changing the definition ofP to handle ordinals. We prefer
to keep a simpler profile here, and give a somewhat ad-hoc but
more intuitive proof.

We will need a couple of lemmas to help us build the proof. As
a shorthand, we noteθij = (µi, σj).

LEMMA 2. With t = t0, P0 = P(θ12, t0, (h.1, k[0/ℓ])) holds.

This lemma states that ifP is true at loop entry, then it remains
true just before the loop body of the first iteration, at point
(h.1, k[0/ℓ]).

PROOF. ∀I ∈ Dom t:

I[[I]](h.1, k[0/ℓ])t =

= R<(h.1,k[0/ℓ])(tI) (defI[[]])

= R<p(tI) (def t)

= I[[I]]pt (defI[[]])

= E [[C[[I]]hµ]]σk (P(θ, t, p))

= E [[R<h(µI)]]σk (defC[[]])

= E [[R<h(µI)]]σk[0/ℓ] (first iteration)

= E [[R<h(µI)]]σ0k[0/ℓ] (extension toσ0)

= E [[loopℓφ(R<h(µI),⊥)]]σ0k[0/ℓ] (def loopℓφ)

= E [[σ0Ih.0]]σ0k[0/ℓ] (defσ0)

= E [[Ih.0]]σ0k[0/ℓ] (defE [[]])

= E [[µ0Ih.0]]σ0k[0/ℓ] (defµ0)

= E [[R<h.1(µ0I)]]σ0k[0/ℓ] (defR<)

= E [[C[[I]]h.1µ0]]σ0k[0/ℓ] (defC[[]])

So,P(θ0, t, h.1, k[0/ℓ]) holds. The extension ofθ0 to θ12 con-
cludes the proof of Lemma 2. �

LEMMA 3. Let tx = I[[S]](h.1, k[x − 1/ℓ])tx−1. Given
Px−1 = P(θ12, tx−1, (h.1, k[x − 1/ℓ])) for some x ≥ 1,
then Px = P(θ12, tx, (h.1, k[x/ℓ])) holds.

This second lemma ensures that ifP is true at iterationx − 1,
then it stays the same at iterationx, after evaluating the loop
body. Note that the issue of whether we will indeed enter the
loop again or exit it altogether is no factor here.

PROOF. By induction, applying the theorem toS, we know
that the property

P ′
x−1 = P(θ12, tx, (h.2, k[x − 1/ℓ]))

holds, sinceh.1+ = h.2, andθ12 = C[[S]]h.1θ12, asC[[]] is
idempotent. We thus only need now to “go around” to the top
of the loop:

I[[I]](h.1, k[x/ℓ])tx =

= R<(h.1,k[x/ℓ])(txI) (defI[[]])

= R<(h.2,k[x−1/ℓ])(txI) (defR<)

= I[[I]](h.2, k[x − 1/ℓ])tx (defI[[]])

= E [[C[[I]]h.2µ1]]σ2k[x − 1/ℓ] (P ′
x−1)

= E [[R<h.2(µ1I)]]σ2k[x − 1/ℓ] (defC[[]])

= E [[loopℓφ(R<h(µI),R<h.2(µ1I))]]σ2k[x/ℓ] (loopℓφ)

= E [[σ2Ih.0]]σ2k[x/ℓ] (defσ2)

= E [[Ih.0]]σ2k[x/ℓ] (defE [[]])

= E [[µ1Ih.0]]σ2k[x/ℓ] (defµ1)

= E [[R<h.1(µ1I)]]σ2k[x/ℓ] (defR<)

= E [[C[[I]]h.1µ1]]σ2k[x/ℓ] (defC[[]])

This concludes the proof of Lemma 3. �

We are now ready to tackle the different cases that can occur
during evaluation. These three cases are:

1. when the loop is not executed, that is when the exit con-
dition is false before entering the loop body: we know that
¬I[[E]]t(h.1, k[0/ℓ]). Based on Lemma 2, we can show that
P(θ′, t′, p+) holds, asθ′ = θ2 that extendsθ12, t′ = t as
defined by the exit of thewhileℓ in I[[]], andk[0/ℓ] = k:

I[[I]](p+)t =

= R<p+(tI) (defI[[]])

= R<p(tI) (def t)

= I[[I]]pt (defI[[]])

= E [[C[[I]]hµ]]σk (P)

= E [[R<h(µI)]]σk (defC[[]])

= E [[R<h(µI)]]σ2k (ext.σ2)

= E [[loopℓφ(R<h(µI),R<h.2(µ1I))]]σ2k (def loopℓφ)

= E [[σ2Ih.0]]σ2k (defσ2)

= E [[Ih.0]]σ2k (defE [[]])

= E [[closeℓφ(C[[E]]h.1µ1, Ih.0)]]σ2k (closeℓφ)

= E [[σ2Ih.2]]σ2k (defσ2)

= E [[Ih.2]]σ2k (defE [[]])

= E [[µ2Ih.2]]σ2k (defµ2)

= E [[R<h+(µ2I)]]σ2k (defR<)

= E [[C[[I]]h+µ2]]σ2k (defC[[]])

2. when the loop is executed a finite number of times, that is
when the loop body is executed at least once: letω > 0
be the first iteration on which the loop condition becomes
false:

ω = min{x | ¬I[[E]](h.1, k[x/ℓ])tω}

= min{x | ¬E [[C[[E]]h.1µ1]]σ2k[x/ℓ]} (Lemma 1)

By Lemmas 2 and 3, using induction onS, we know that
P ′

ω = P(θ12, tω, (h.2, k[ω − 1/ℓ])) holds. We prove be-
low thatP(θ′, tω, p+) also holds (as a shorthand, we note

6 2006/7/31

kn = k[n/ℓ]):

I[[I]](p+)tω =

= R<p+(tωI) (defI[[]])

= R<(h.2,kω−1)(tωI) (defR<)

= I[[I]](h.2, kω−1)tω (defI[[]])

= E [[C[[I]]h.2µ1]]σ2k
ω−1 (P ′

ω)

= E [[R<h.2(µ1I)]]σ2k
ω−1 (defC[[]])

= E [[loopℓφ(R<h(µI), R<h.2(µ1I))]]σ2k
ω (loopℓφ)

= E [[σ2Ih.0]]σ2k
ω (defσ2)

= E [[Ih.0]]σ2k
ω (defE [[]])

= E [[closeℓφ(C[[E]]h.1µ1, Ih.0)]]σ2k (closeℓφ)

= E [[σ2Ih.2]]σ2k (defσ2)

= E [[Ih.2]]σ2k (defE [[]])

= E [[µ2Ih.2]]σ2k (defµ2)

= E [[R<h+(µ2I)]]σ2k (defR<)

= E [[C[[I]]h+µ2]]σ2k (defC[[]])

Finally, using Kleene’s Fixed Point Theorem [19], we can
relate the least fixed point fix(W) used to define the stan-
dard semantics ofwhile loops and the successive iterations
W i(⊥) of the loop body:

t′ = fix(W)(h, k[0/ℓ])t

= lim
i→∞

W i(⊥)(h, k[0/ℓ])t

= W ω(⊥)(h, k[0/ℓ])t

= tω

and soP(θ′, t′, p+) holds.

3. when the loop is infinite:t′ = limi→∞ W i(⊥)(h, k[0/ℓ])t =
⊥. Thus:

I[[I]](p+)⊥ = ⊥ = (defI[[]])

= E [[closeℓφ(C[[E]]h.1µ1, Ih.0)]]σ2k (min ∅ = ⊥)

= E [[σ2Ih.2]]σ2k (defσ2)

= E [[Ih.2]]σ2k (defE [[]])

= E [[µ2Ih.2]]σ2k (defµ2)

= E [[R<h+(µ2I)]]σ2k (defR<)

= E [[C[[I]]h + µ2]]σ2k (defC[[]])

So,P(θ′, t′, p+) holds.

thus completing the proof of our main theorem, and ensuring the
consistency of the wholeSSA conversion process. �

We are left with the simple issue of checking that state consis-
tency is satisfied for the initial states.

LEMMA 4. P(⊥,⊥, (1, 0m)) holds.

PROOF.

I[[I]](1, 0m)⊥ =

= R<1.1(⊥I) (defI[[]])

= ⊥

= E [[R<1(⊥I)]]⊥0m (defR<)

= E [[C[[I]]1⊥]]⊥0m (defC[[]])

�

The final theorem wraps things up by showing that after evalu-
ating anSSA-converted program from consistent initial states, we
end up in states that remain consistent. Note that this remains true
even if the whole program loops.

THEOREM2. Given S ∈ Stmt, with θ = C[[S]]1⊥ and t =
I[[S]](1, 0m)⊥, the property P(θ, t, (2, 0m)) holds.

PROOF. Trivial using Lemma 4 and Theorem 1. �

7. Discussion
Even though the initial purpose of our work is to provide a firm
foundation to the use ofSSA in modern compilers, our results also
yield an interesting theoretical insight on the computational power
of SSA.

7.1 Recursive Partial Functions Theory

The mathematical wording of the Consistency Property 1 under-
lines a key aspect of theSSA conversion process. Whilep only
occurs on the left hand side of the consistency equality, thesyntac-
tic locationh and the iteration space vectork are uncoupled in the
right-hand side expression. Thus, via theSSA conversion process,
the standard semantics gets staged, informally getting “curryied”
from Stmt → (N∗ × Nm) → T → T to Stmt → N∗ →
Nm → T → T ; this is also visible on Figure 4, where the pair
(h, k) is used on the left arrow, whileh andk occur separately on
the top and on the right arrows. This perspective change is rather
profound, since it uncouples syntactic sequencing from runtime
iteration space sequencing.

There exists a formal computing model that is particularly well
suited to describing iteration behaviors, namely Kleene’stheory of
partial recursive functions [19]. In fact, theSSA appears to be a
syntactic variant of such a formalism. We provide below a rewriting
K[[]] of SSA bindings to recursive function definitions.

First, to eachSSA identifierI , we associate a functionI(k), and
translate anySSA expression involving neitherloopφ nor closeφ
nodes5 as function calls:

K[[N]]k = N

K[[I]]k = I(k)

K[[E1 ⊕ E2]]k = ⊕(E [[E1]]k, E [[E2]]k)

Then, to collect partial recursive function definitions corre-
sponding to anSSA programσ, we simply gather all the defini-
tions for each binding,

S

I∈Dom σ K[[I, σI]]. Informally, for loopφ
expressions, we simply rewrite the two cases correspondingto
their standard semantics. Forcloseφ expressions, we add an an-
cillary function that computes the minimum value (if any) ofthe
loop counter corresponding to the number of iterations required
to compute the final value, and plug it into the final expression.

5 Without loss of generality, we assume thatφ nodes only occur as top-level
expression constructors.

7 2006/7/31

This is formally defined as follows, usingkp,q as a shorthand for
kp, kp+1, ..., kq−1, kq:

K[[I, loopℓφ(E1, E2)]]k =

{I(k1,ℓ−1, 0, kℓ+1,m) = K[[E1]](k1,ℓ−1, 0, kℓ+1,m),

I(k1,ℓ−1, x + 1, kℓ+1,m) = K[[E2]](k1,ℓ−1, x, kℓ+1,m)}

K[[I, closeℓφ(E1, E2)]]k =

{minI(k1,ℓ−1, kℓ+1,m) =

(µy.K[[E1]](k1,ℓ−1, y, kℓ+1,m) = 0),

I(k) = K[[E2]](k1,ℓ−1, minI(k1,ℓ−1, kℓ+1,m), kℓ+1,m)}

K[[I, E]]k = {I(k) = K[[E]]k}

whereµ is Kleene’s minimization operator. We also assumed that
boolean values are coded as integers (false is 0).

7.2 Example

As an example of this transformation to partial recursive functions,
we provide below the translation of our running example (see
Figure 5) into partial recursive functions. For increased readability,
we renamed variables to use shorter indices.

I1(k1) = 7

J1(k1) = 0

J2(0) = J1(0)

J2(x + 1) = J3(x)

J3(k1) = +(J2(k1), I1(k1))

minJ4
() = (µy. < (J2(y), 10) = 0)

J4(k1) = J2(minJ4
())

Figure 5. Partial recursive functions example.

Our conversion process fromImp to SSA can thus be seen as
a way of converting anyRAM program [12] to a set of Kleene’s
partial recursive functions, thus providing a new proof of Turing’s
Equivalence Theorem between these two computational models,
previously typically proven using simulation [12].

8. Future Work
We looked in this paper at theImp-to-SSA conversion process. A
natural dual problem of course arises, namely the so-called“out-of-
SSA” [6, 4, 18] issue: a way of prettyprintingSSA programs using
typical, imperative-like programming language syntax such asImp.
This is of utmost importance when one considers for instancethe
issues of debugging or code generation. In GCC, this is dealtwith
using a graph algorithm [7] operating on the control-flow data
structure decorated with theSSA annotations used in its middle
end.

For our approach, this technique could also be used in a simi-
lar fashion, assuming we kept around the control-flow graph from
which ourSSA code has been generated. A more intriguing ques-
tion is whether such an out-of-SSA Imp code generator could be
designed using only our self-containedSSA syntax. In a perfect
world, one would indeed want to get back the originalImp code
from whichSSA has been generated. This requires reconstructing
thewhile loop structure using data dependence withinSSA code,
together with an intelligent ordering of code generation for each
binding inσ to minimize code duplication.

9. Conclusion
We presented the first denotational specifications of both the se-
mantics ofSSA and of its conversion process from a core impera-
tive programming language.SSA is the central control-flow inter-
mediate representation format used in the middle ends of modern
compilers such asGCC or Intel CC that target multiple source lan-
guages. Yet, there is surprisingly very limited work studying the
formal properties of this central data representation technique.

Our main theorem proves that standard semantics is preserved
after the transformation of imperative programs to theirSSA in-
termediate forms. As a by-product, it provides another reduction
proof for theRAM computational model to Kleene’s partial recur-
sive functions theory.

Since our results ensure the correctness of the translationpro-
cess of all imperative programs toSSA, they pave the way to addi-
tional research from the programming language community, for in-
stance for optimization purposes, which would directly targetSSA
instead of source languages. UsingSSA as the language of interest
for such endeavors would ensure the portability of the resulting al-
gorithms (see [1] for some examples) to all programming languages
supported byGCC or other similar compilers. This applies to both
imperative or object-oriented programming languages (such as C or
Java viaGCC) or functional ones (such as Erlang via HiPE [15]).

Acknowledgments
The authors thank Neil Jones for his help regarding Kleene’spartial
recursive functions theory, Ken Zadeck for his remarks oncloseφ
nodes and François Irigoin for his suggestions.

References
[1] A. W. Appel. Modern Compiler Implementation. Cambridge

University Press, 1998.

[2] A. W. Appel. SSA is functional programming.SIGPLAN Not.,
33(4):17–20, 1998.

[3] G. Bilardi and K. Pingali. Algorithms for computing the static single
assignment form.J. ACM, 50(3):375–425, 2003.

[4] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical
improvements to the construction and destruction of staticsingle
assignment form.Software Practice and Experience, 28(8):859–881,
1998.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. An efficient method of computing static single assignment
form. InPOPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 25–35,
New York, NY, USA, 1989. ACM Press.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.Zadeck.
Efficiently computing static single assignment form and thecontrol
dependence graph.ACM Trans. on Programming Languages and
Systems, 13(4):451–490, Oct. 1991.

[7] GCC implementation of “out of SSA”.http://gcc.gnu.org/
viewcvs/trunk/gcc/tree-outof-ssa.c.

[8] The GNU Compiler Collection.http://gcc.gnu.org.

[9] S. Glesner. An ASM semantics for SSA intermediate representations.
In Proceedings of the 11th International Workshop on Abstract State
Machines. Springer Verlag, Lecture Notes in Computer Science, May
2004.

[10] M. J. C. Gordon. The denotational description of programming
languages. Springer Verlag, 1979.

[11] Intel compilers.http://intel.com/.

[12] N. D. Jones.Computability and complexity: from a programming
perspective. MIT Press, Cambridge, MA, USA, 1997.

8 2006/7/31

[13] R. A. Kelsey. A correspondence between continuation passing style
and static single assignment form.ACM SIGPLAN Notices, 30(3):13–
22, 1995.

[14] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. InACM Conf. on Code
Generation and Optimization (CGO’04), Palo Alto, California, Mar.
2004.

[15] D. Luna, M. Pettersson, and K. Sagonas. Efficiently compiling a
functional language on AMD64: the HiPE experience. InPPDP ’05:
Proceedings of the 7th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 176–186,
New York, NY, USA, 2005. ACM Press.

[16] S. S. Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufmann, 1997.

[17] S. Pop, A. Cohen, and G.-A. Silber. Induction variable analysis with
delayed abstractions. InIntl. Conf. on High Performance Embedded
Architectures and Compilers (HiPEAC’05), number 3793 in LNCS,
pages 218–232, Barcelona, Spain, Nov. 2005. Springer-Verlag.

[18] V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam.
Translating out of static single assignment form. InSAS ’99:
Proceedings of the 6th International Symposium on Static Analysis,
pages 194–210, London, UK, 1999. Springer-Verlag.

[19] J. E. Stoy.Denotational Semantics: the Scott-Strachey Approach to
Programming Languages Theory. MIT Press, 1977.

[20] F. K. Zadeck. Loop closed SSA form. Personal communication.

[21] F. K. Zadeck. Static single assignment form, 2004 GCC Summit
keynote.http://naturalbridge.com/GCC2004Summit.pdf.

9 2006/7/31

