
ISBN 2-9527275-0-3
ISBN 978-2-9527275-0-1

Corrector, a web interface for practice sessions

Fabien Coelho – fabien.coelho@ensmp.fr
CRI, ENSMP, 35, rue Saint-Honoré, 77305 Fontainebleau, France

Résumé

L’application Web Corrector valide automatiquement les réponses proposées par un étudiant en séance

pratique. L’enseignant n’intervient que pour résoudre les problèmes de compréhension. Corrector est par-

ticulièrement adapté au langage de base de données SQL, dont les nombreuses requêtes équivalentes sont

traitées astucieusement. D’autres modes de correction permettent de gérer la modification des données ou

des structures, utilisent des signatures cryptographiques ou des expressions régulières.

Abstract

The Corrector web interface provides immediate feedback to students during practice sessions by validating

answers. The teacher needs only focus on solving comprehension problems. Corrector is especially well

fitted to the SQL database language, as it deals with questions which admit many equivalent queries. Other

correction modes handle modifying data contents or structures, use cryptographic proof-of-success tokens or

regular expressions.

Motivation

Teaching computer science becomes harder as stu-
dents are less akin to focus on technical fields. Rela-
tional databases [2] and their SQL [5] data manipula-
tion language is a technical subject which requires ab-
straction efforts. A typical class alternates theoretical
blackboard presentations with practice sessions hands-
on, where students develop queries to answer increas-
ingly challenging questions. However, many queries
are equivalent in the relational model, thus it is of-
ten unclear to a student whether an answer is right.
Teacher validation during session is time consuming
and reduces the available time to provide help.

Many graphical interfaces exist to help teach SQL.
For instance, SQL Tutor [6] is a rule-based system
which helps a student to find a fixed query from an
exercise set. It provides a targeted help at the price
of extensive tailoring, and cannot deal with equivalent
queries. Other tools are dedicated to fill-in the gap
exercises [8] or programming [7]. Our approach ex-
tends [4], but is not limited to SQL select statements.

Web interface

Our course uses PostgreSQL [1], a feature-full free stan-
dard object-relational database management system.
An example data set about comics is provided for prac-
tice: although queries to find the average salary in the

finance department and the average number of pages

of comics published by Delcourt may have the same
structure, students find the later more attractive. This
preference changes when they begin to look for a job.

The Corrector web interface is built on top of Post-
greSQL, using standard tools such as HTML, Apache,
CGI, Perl. It is internationalized using portable object

files, with message translations available in English and
French. The security is handled based on permissions
declared by the teacher. Careful configurations mit-
igate the risk of executing student code, by isolating

and limiting the queries.

Fig. 1 Interface architecture

Figure 1 outlines the interface. Each page presents
a dynamically generated contents based on the user
identity and additional parameters. Students are re-
stricted to the upper interface: it accesses active prac-
tice sessions which point to their questions. The rich
teacher interface manages students, classes, exercises,
questions, connections and sessions.

Correction techniques

Corrector validates proposed answer interactively, us-
ing from basic to advanced correction modes.

First, answers can be stored for later manual correc-
tion. The validation of a question is performed for all
answers in a single step, and allows to provide a specific
comments to each student.

Second, a set of correction modes compares the pro-
vided answer with a target string, including regular
expression matches. These modes have been proven
hard to be highly effective, especially when keywords
are expected, as students are very imaginative.



Third, SQL queries are actually executed on the
database: for selects, the result is compared to the
result of a reference query, and the first difference is
reported if any; for other statements, database trans-
actions are used to rollback the student changes at the
end of the validation, so that the reference database is
not modified. The validation itself is performed with
tailored queries to check whether the intended trans-
formations was performed, before cancelling them.

Fig. 2 Cryptographic validation

Fourth, a cryptographic token-based correction
mode is provided, shown in Figure 2. The student
interacts with a helper application, say a web server
in a practice about the HTTP protocol. When the
interaction succeeds, the helper application releases a
proof of success token which involves a public informa-
tion, such as the student login name obtained with the
ident protocol, and the cryptographic hash of this pub-
lic information and a question specific shared secret.

token = info:h(info:secret)

When receiving the token, Corrector recomputes the
hash from the provided information and the secret to
validate it.

Discussion

Crafting questions suitable to the corrector interface is
not straightforward. There is a communication prob-
lem, as there must be only one possible response from
the student. Indeed, the automatic correction cannot
deal with good alternate answers to ambiguous ques-
tions and attribute points to them. Thus all SQL query
questions must tell precisely the attributes expected as
well as the order in which the results must be presented,
thus requiring full order by clauses in all answers.

Students often use the web interface as an interface
to the database, not bothering to test queries first.
Such strategy is effective for simple queries, but not
for complex ones: the interface is not a substitute to
the text and graphical database interfaces which pro-
vide help about syntax or semantical errors.

Most students never look at the expected answers
after the practice, once the corrections are available.
We’re planning to push the relevant information, pos-
sibly through a simple mail pointing to a summary web
page.

Some students develop creative strategies to get rid
of the practice quickly while still getting the positive

feedback from the interface. For instance, if a small
number is expected, they would try all integers from 0
till they get the point, or they would submit an entire
dictionary in the hope of hitting the wanted keyword.
Browsing submitted answers is necessary to detect and
deter with reduce marks such behavior.

Although the teacher interface allows to create new
exercises, it is seldom used: a paper version of the prac-
tice is also useful, thus importation scripts take special
LATEX files with added comments to feed the system.
However, the teacher interface is often used to fix ques-
tions on the fly during the session when students stum-
ble upon problems or ambiguities.

Conclusion

More than 150 students have used Corrector on prac-
tices about databases, network protocols and cryptog-
raphy. The teacher’s time spent on preparing and per-
forming lessons has not been reduce. However the stu-
dent and teacher experiences are both improved. More
time is spend on the preparation and the configuration,
and less time on the correction.

I intend to distribute Corrector as a free software at
some stage. However it requires a precise documenta-
tion, especially on the system installation issues which
involve careful database and web server configuration,
and which is yet to be written. Future works also in-
volve new features, such as an examination mode which
does not report the points to the student. Further de-
scriptions can be found in a technical report [3].

References
[1] PostgreSQL. www.postgresql.org, 1996–2006.

[2] E. F. Codd. A relational model for large shared databanks. Com-

munications of the ACM, 13(6):377–387, June 1970.

[3] F. Coelho. Corrector, a Web Interface for Practice Session
with Immediate Feedback. Technical Report A/377/CRI, CRI,

École des mines de Paris, Apr. 2006. http://www.cri.ensmp.fr/
classement/doc/A-377.pdf.

[4] J. Coleman Prior. Online assessment of SQL query formula-
tion skills. In ACE ’03: Proceedings of the fifth Australasian

computing education conference on Computing education 2003,
pages 247–256, Darlinghurst, Australia, 2003. Australian Com-
puter Society, Inc.

[5] ISO/IEC. Information technology - database languages - SQL,
2003. Standard 9075.

[6] A. Mitrovic. Learning SQL with a computerized tutor. In
SIGSCE’98, Atlanta, Georgia, USA, pages 307–311, 1998.

[7] Y. Pisan, D. Richards, A. Sloane, H. Koncek, and S. Mitchell.
Submit! a web-based system for automatic program critiquing.
In ACE ’03: Proceedings of the fifth Australasian computing
education conference on Computing education 2003, pages –
, Darlinghurst, Australia, 2003. Australian Computer Society,
Inc.

[8] N. Truong, P. Roe, and P. Bancroft. Automated feedback for ”fill
in the gap” programming exercices. In ACE’05: Proceedings of

the seventh Australasian computing education conference on
Computing education 2005, pages 117–126, Darlinghurst, Aus-
tralia, 2005. Australian Computer Society, Inc.

Typeset with LATEX, document revision 1386


