
Improving GNU Compiler Collection Infrastructure for Streamization

Antoniu Pop
Centre de Recherche en Informatique, Ecole des mines de Paris, France

apop@cri.ensmp.fr

Sebastian Pop, Harsha Jagasia, Jan Sjödin
Solutions Enablement Engineering, Advanced Micro Devices, Austin, Texas

firstname.lastname@amd.com

Paul H J Kelly
Imperial College of London, UK
p.kelly@imperial.ac.uk

Abstract

GNU Compiler Collection (GCC) needs a strategy to sup-
port future multicore architectures, which will probably
include heterogeneous accelerator-like designs with ex-
plicit management of scratchpad memories. Some have
further restrictions; for example, SIMD has limited syn-
chronization capabilities. Some platforms will probably
offer hardware support for streaming, transactions, and
speculation.

The purpose of this paper is to survey and evaluate some
automatic and manual techniques for improving support
for such targets in GCC. We focus on translation of se-
quential code for such platforms, i.e., the translation to
task graphs and their communication and memory ac-
cess operations. The paper provides an evaluation of the
communication library support on an AMD PhenomT M

X4 9550 quad-core processor. We use these experiments
to tune the automatic task partitioning algorithm imple-
mented in GCC. The paper concludes with recommen-
dations for strategic developments of GCC to support
a stream programming language and improve the auto-
matic generation of streamized tasks.

1 Introduction

Several of the popular programming languages are
scalar sequential languages (for example C, C++, For-
tran, Java). Generating SIMD and MIMD code from
these languages is challenging, but there are techniques

that we present in Sections 2 and 3 that can generate effi-
cient parallel code. In all the techniques that we present,
the transfer of data between tasks happens via a commu-
nication channel, called stream.

We describe manual and automatic techniques that al-
low the parallelization of communicating tasks. The
manual techniques that we present include extensions
to languages, such the Brook language [4] that ex-
tends the syntax of the C language, and hints, such as
the OpenMP pragmas [6], that directly convey infor-
mation from the programmer to the compiler. Man-
ual techniques can be more effective than automatic
techniques in describing parallelism and communica-
tions, but the automatic approach is better suited to large
legacy codes, as it does not require modifications of the
source code. Section 3 presents an automatic technique
for detecting parallel tasks with communication that we
implemented in GCC, together with a runtime library
support for streams of data. We provide an evaluation
of the stream implementation that shows the cost of ex-
ecuting multiple communicating tasks in parallel.

The paper starts by presenting previous work in the au-
tomatic and manual streamization. The next section
presents GCC’s infrastructure for supporting automatic
streamization, and the last sections define improvements
to this infrastructure: first the static analysis improve-
ments, then improvements to multi-task code generation
and the interaction between the compiler and runtime li-
braries.

1



Platform Layer

Brook ACOTES

ParallelizationTask Partitioning

libGOMP Synchronization Array

DD Analysis

OpenMPStreamItCUDA

OS GPUCPU

Language Layer

Compiler Layer

Library / Runtime

Figure 1: Techniques for streamization described in the related work section

2 Related Work

Figure 1 shows a software stack providing support for
streaming computations: the language layer allows pro-
grammers to express the parallelism of the application,
the techniques in the compiler layer automatically ex-
tract the parallelism, and the runtime library and plat-
form layers provide execution support for streaming
computations. The survey in this section is not intended
to be an encyclopaedic review of related research, but
instead a selective analysis of key points of reference.

2.1 Language Layer

The language layer provides a syntactic interface to the
underlying layers.

• The Brook language [4] provides language ex-
tensions to C with single program multiple
data (SPMD) operations that work on streams,
i.e., control flow is synchronized at communica-
tion/synchronization operations. Streams are de-
fined as collections of data that can be processed
in parallel. For example: “float s<100>;” is
a stream of 100 independent floats. User-defined
functions that operate on streams are called kernels
and use the “kernel” keyword in the function def-
inition. The user defines input and output streams
for the kernels that can execute in parallel by read-
ing and writing to separate locations in the stream.
Brook kernels are blocking: the execution of a
kernel must complete before the next kernel can
execute. This is the same execution model that
is available on graphics processing units (GPUs):
a task queue contains the sequence of shader pro-
grams to be applied on the texture buffers.

• CUDA [5] is similar to Brook, but also invites the
programmer to manage local scratchpad memory

explicitly: in CUDA, a block of threads, assigned to
run in parallel on the same core, share access to a
common scratchpad memory. CUDA is lower level
from a memory control point of view. The key dif-
ference is that CUDA has explicit management of
the per-core shared memory. Brook was designed
for shaders: it produces one output element per
thread, any element grouping is done using input
blocks reading from main memory repeatedly.

• The StreamIt language [3] contains syntactic
constructs for defining programs structured as task
graphs. Tasks contain Java-like code that is exe-
cuted in a sequential mode. StreamIt provides
three interconnection modes: the Pipeline allows
the connection of several tasks in a straight line;
the Split allows a task to have more than one out-
put or input streams; and, the FeedbackLoop al-
lows the creation of streams from consumers back
to producers. The channels connecting tasks are
implemented either as circular buffers or as mes-
sage passing for low amounts of information.

• The OpenMP standard [6] extends the C, C++, and
Fortran languages with pragmas for specifying par-
allel constructs, such as loops or sequential blocks
of code. The compiler translates the OpenMP prag-
mas into calls to a threading runtime library assum-
ing a shared memory model. OpenMP supports
SPMD loop parallelism well, and task-parallelism
partially. The model completely hides all the com-
munication in the program, though programmers
can mark some variables as private rather than
shared. Similarly, reduction variables are han-
dled in a declarative way that leaves the compiler
to choose the implementation strategy. Version
3.0 of the OpenMP standard allows nested paral-
lelism, and defines the notion of tasks [8]. Tasks in
OpenMP enhance the support for task parallelism,
and in particular pipelines; however, sharing and

2



communication are still hidden.

• The ACOTES project [1] proposes extensions to
the OpenMP 3.0 standard that can be used for
manually defining complete task graphs, includ-
ing asynchronous communication channels: it adds
two clauses to the OpenMP 3.0 task pragma for
defining inputs and outputs [2]. The implementa-
tion of the ACOTES extensions to OpenMP 3.0
includes two parts: the compiler part translates the
pragma clauses to calls to a runtime library extend-
ing the OpenMP library.

The ACOTES extensions are an attempt to make
communication between tasks explicit. Channels
can be implemented on top of shared memory as
well as on top of message passing. ACOTES exten-
sions can be classified MIMD, as several tasks can
execute in parallel on different data streams. This
aims to shift the memory model of OpenMP from
shared memory to distributed memory for the task
pragmas.

The resulting ACOTES programming model can be
compared to the Brook language: these languages
both provide the notion of streams of data flow-
ing through processing tasks that can potentially
contain control flow operations. The main differ-
ence between these two programming languages
is in their semantics. In the execution model of
a Brook task, the task is supposed to process all
the data contained in the stream before executing
another task. The tasks in the ACOTES semantics
are non-blocking: the execution of a task can pro-
ceed as soon as some data is available in its input
streams. The main limitation of the Brook lan-
guage is due to the intentionally blocking seman-
tics that follows the constraints of the target hard-
ware, i.e., GPUs, in which the executing tasks have
to be loaded on the GPU, an operation that has a
non-negligible cost. The design of the Brook lan-
guage and of CUDA follows these constraints, re-
stricting the expressiveness of the language inten-
tionally. The ACOTES programming model does
not contain these limitations and, as we shall see in
the following sections, the runtime library support
of the ACOTES streams can dynamically select the
blocking semantics of streams to fit the cost con-
straints of the target hardware.

2.2 Compiler Layer

The compiler layer provides support for translating and
adapting the language constructs to the lower layers:
it provides automatic transformations from sequential
code to stream computations.

All the automatic parallelization techniques are based
on the data dependence analysis information [11, 12, 7].
This static analysis determines the relations between
memory accesses and allow the analysis of dependences
between computations via memory accesses. This in
turn allows task partitioning, data and computation pri-
vatization.

• Data dependences represent a relation between two
tasks: in the case of flow dependences, the depen-
dence relation is between a task that writes data and
another task that is reading it. Figure 2 represents a
regular data flow relation in which all the elements
written by the producer are consumed. In Figure 3
only a part of the elements of the array are written,
making a part of the read elements dependent on a
previous producer. Figure 4 presents a more diffi-
cult dependence relation that cannot be determined
at compile time: the consumer task is then consid-
ered dependent on the completion of the producer
task.

written elements

read elements

data dependences

Figure 2: Regular flow data dependences

written elements

data dependences

read elements

Figure 3: Shifted data dependences: a part of the depen-
dences flow from an earlier producer and another part to
a later consumer.

• Partitioning computation and data: among the
compiler transformations that can generate tasks
and communication channels is loop distribution,

3



written elements

read elements

data dependences

Figure 4: Irregular data dependences not known at com-
pile time: the consumer has to wait for the last el-
ement produced for starting consuming (for example
when written elements are A(i) and read elements are
accessed via an indirection: A(B(i))).

that can split a loop into several parallel loops
that execute in pipelines. The maximal loop dis-
tribution algorithm is known as the Allen-Cocke-
Kennedy algorithm for vector code generation [7].
It builds a dependence graph showing all depen-
dences between statements, then walks in a topo-
logical sort order the statements of the loop and
outputs vector versions of each statement. Cycles
result in (minimal) serial loops. Array privatiza-
tion or scalar expansion techniques are used for
augmenting the parallelism generated by the loop
distribution: these techniques allocate enough data
for keeping track of all the array or scalar variable
versions that the producer loop has written. This
extra use of memory is needed to eliminate loop-
carried dependences, making the loop distribution
legal. In the following sections, we present a vari-
ation of the data privatization techniques: we limit
the amount of duplicated memory to the size of a
stream channel, reducing the overhead of privati-
zation. Section 3.1 describes this dynamic privati-
zation technique for loop distribution: it generates
producer and consumer tasks, and the channels in
between tasks replace shared memory accesses by
FIFO channels.

• Coarse grain automatic parallelization is translat-
ing sequential code to parallel code by partitioning
and distributing computation among several execu-
tion threads. Starting with version GCC 4.3, there
is an infrastructure for automatically translating se-
quential code to parallel code using the OpenMP li-
brary. The support for this infrastructure has to be
improved by parallelizing at a coarser grain outer
loops, and also by improving the profitability func-
tion.

2.3 Runtime and Library Layer

The runtime and library layer provides an interface
to the necessary services for streamization and paral-
lelization. The runtime library is a target for the com-
piler layer translation of the language constructs into
stream computation. It provides high-level communica-
tion and synchronization support that enable an efficient
translation, as well as support for concurrent execution.
The communication and synchronization functionality it
provides further relies on the available OS and hardware
support.

• OpenMP support in GCC is provided by the GOMP
library. It currently implements the OpenMP 2.5
standard, and an adaptation for OpenMP 3.0 is
available in a branch.

• Synchronization Arrays (SA) have been proposed
in the framework of the Decoupled Software
Pipelining [14] as a means of avoiding OS or spin-
lock synchronization as well as shared memory
communication between producer and consumer.
It relies on hardware support to provide produce
and consume operations. The SA will primarily
behave as a queue, but it also allows for out-of-
order execution as both producer and consumer use
dependence numbers to identify the elements pro-
duced and consumed.

2.4 Platform Layer

The platform layer provides the low-level functionality
used by the runtime library to implement its services.

The platform layer can also provide specific support for
streamization. In the example of the SAs [14], the hard-
ware support significantly increases performance as it
replaces costly OS or spin-lock-based synchronization
and avoids the cache pollution resulting from commu-
nication through shared memory. The authors acknowl-
edge that, without this specific hardware support, they
were unable to achieve any speedup with their Decou-
pled Software Pipelining technique.

In the next section, we describe the implementation of
an automatic streamization framework for GCC. Then,
we analyze several stream benchmarks that will allow
us to tune the cost model of the automatic streamization.

4



3 Auto-Streamization in GCC

We propose here a framework for automatic generation
of stream code in GCC, based on the techniques de-
scribed in the previous section.

As we will see in the next paragraphs, we first need
to provide a way to partition the computation into
tasks that communicate in a way that is conducive to
streamization. The second step is to provide suitable
runtime support for stream communication and, finally,
we need to generate calls to this runtime to enable both
stream communication and concurrency.

3.1 Task Partitioning

The first step in the streamization process is to parti-
tion the computation into tasks that present a producer-
consumer relationship. In other words, the tasks will
have flow dependences between each other. If the
dependence information is not computable at compile
time, as for example in Figure 4, the compiler will not
be able to streamize. In general, the producer and con-
sumer originally communicate through a shared data
structure, with the producer writing and the consumer
reading. We replace this shared memory communica-
tion by stream operations.

In the current implementation, we use the loop distribu-
tion framework to partition a loop into such tasks. We
focus on extracting tasks by distributing loops in which
a loop-carried flow dependence prevents a trivial paral-
lelization. The blocking nature of our stream implemen-
tation implicitly synchronizes the execution of the two
tasks.

The loop distribution would split the following loop:

for (i=1; i<=N; i++)

A[i] = ...;

... = ... A[i-1] ...;

into the two following loops:

producer for (i=1; i<=N; i++)

task A[i] = ...;

consumer for (i=1; i<=N; i++)

task ... = ... A[i-1] ...;

3.2 Runtime Stream Support

To provide the functionality necessary for the streamiza-
tion of the tasks we partitioned, we propose to extend
the OpenMP library with the notion of streams. Streams
are directional channels of communication that behave
as a FIFO queue. The producer pushes elements into the
stream while the consumer pops them.

We implemented this extension in libGOMP, GCC’s
OpenMP library. Our implementation is based on the
stream implementation proposed in the ACOTES project
[1] with some variations needed for reducing the amount
of synchronizations. A stream is defined as a circular
buffer to avoid excessive memory usage, but buffer’s
size could be dynamically resized if this appears to be
a necessity. The buffer contains two sliding windows
where the reads and writes to the buffer occur. These
sliding windows are used for minimizing the amount of
synchronization: sliding windows cannot overlap, such
that elements read and written in these windows can be
performed with no synchronization, allowing the syn-
chronization to only happen when the windows are slid-
ing. Furthermore the sliding windows can be aligned
on cache boundaries, minimizing the number of cache
misses: one or more full cache lines can be blocked on
read or write mode, making them available exclusively
in the caches of one processor before being evicted by
an access request from another processor.

Figure 5 provides the current layout of the structure used
for the streams. The implementation uses four pointers
to track the positions of the two sliding windows and the
positions of the written and read elements in these win-
dows. The read_index and write_index fields
are pointing to the elements of the buffers to be read
or written. These two pointers are always pointing in-
side the sliding windows that start at read_buffer_
index and write_buffer_index. The sliding
windows have a length of local_buffer_size.
The end of stream eos_p flag is mainly important in
the case in which the number of elements that will be
communicated is not known, even symbolically, to in-
form the consumer when the producer has finished.

This stream data structure is used by the interface for
stream communication presented in Figure 6. It is im-
portant to note that the two access operations gomp_
stream_push and gomp_stream_head are block-
ing operations. This means that if the stream buffer is

5



typedef struct gomp_stream {

/* First element of the stream. */

unsigned read_index;

/* First empty element of the stream. */

unsigned write_index;

/* Size of sub-buffers for unsynchronized reads

and writes. */

unsigned local_buffer_size;

/* Index of the sliding reading window. */

unsigned read_buffer_index;

/* Index of the sliding writing window. */

unsigned write_buffer_index;

/* End of stream: true when producer has finished

inserting elements. */

bool eos_p;

/* Size in bytes of an element in the stream. */

size_t size;

/* Number of bytes in the circular buffer. */

unsigned capacity;

/* Circular buffer. */

char *buffer;

} *gomp_stream;

Figure 5: Stream data structure

/* Returns a new stream of N * LOCAL_BUFFER_SIZE

elements. Each element is of size S bytes. */

gomp_stream gomp_stream_create (size_t s, unsigned n);

/* Push element E in the stream S. */

void gomp_stream_push (gomp_stream s, char *e);

/* Read the first element of the stream S. */

char *gomp_stream_head (gomp_stream s);

/* Discard the first element of the stream S. */

void gomp_stream_pop (gomp_stream s);

/* Check if the producer has finished inserting

elements in the stream S. */

bool gomp_stream_eos_p (gomp_stream s);

/* Set the end-of-stream flag for stream S. */

void gomp_stream_set_eos (gomp_stream s);

/* Destroy the stream S. */

void gomp_stream_destroy (gomp_stream s);

/* Push COUNT elements into the stream S, starting

at the address START. */

void gomp_stream_align_push (gomp_stream s,

char *start, int count);

/* Discard COUNT elements from the stream S. */

void gomp_stream_align_pop (gomp_stream s, int count);

Figure 6: Stream interface

full, the push operation will block the producer until

the consumer slides its read window. When the buffer is
empty, the head operation will not return until the pro-
ducer slides at least once the writing window. Produc-
ers use gomp_stream_set_eos to expose partially
written write buffer when ending writing to a stream. To
avoid deadlocks, the code generated using this interface
must guard the use of these operations or have precise
information on the tasks’ behaviors.

We also provide two additional alignment functions,
gomp_stream_align_push and gomp_stream_
align_pop that allow us to ensure the elements
pushed by the producer in the stream match the ones
expected by the consumer as showed in Figures 2 and
3. Typically, this is necessary if, in the same iteration of
a loop we distribute, the producer and consumer do not
access the same element of an array.

Communication through streams rather than through
shared memory also implies that the data is privatized,
which constitutes an overhead, but could allow for more
concurrency and cache locality on non-shared memory
systems.

3.3 Code Generation

To parallelize the tasks we previously partitioned, we
generate calls to the extended OpenMP library. We first
enclose the tasks in OpenMP sections that will execute
concurrently. Then we introduce calls to the appropri-
ate functions from the stream extension to provide for
communication and synchronization.

In the producer task, we generate a call to gomp_
stream_push after the write that was at the origin
of the flow dependence. Note that we cannot remove
the write operation for the time being as we do not have
a precise enough interprocedural analysis to decide if
there are further uses of that memory location.

In the consumer task, we generate a call to gomp_
stream_head instead of the read operation, then we
call gomp_stream_pop to remove the element from
the stream. Our decision to split this operation is to
allow, in some cases, the removal of an unnecessary
copy of the element from the stream to a temporary.
This could be significant if the elements occupy a lot
of space. For the consumer, we can safely remove the
read operation.

6



A last step is to generate code to align the streams. As
quite often the flow dependence along which we gener-
ate the stream is a loop-carried dependence, if we just
replace the read and write operations by stream opera-
tions, the producer and consumer will not be temporally
synchronized. In the example we proposed above, while
the producer first pushes A[1] into the stream, the con-
sumer expects to first read A[0]. For this, we provide two
alignment functions. To generate calls to the alignment
functions gomp_stream_align_push and gomp_
stream_align_pop, we need to know the number
of elements we must align. The data dependence analy-
sis provides us with this precise information in the form
of the distance vector associated to this flow depen-
dence. In the example we proposed above, the stream
code generated by GCC is similar to what a programmer
could write in OpenMP with calls to the GOMP streams,
as shown in Figure 7.

gomp stream s = gomp stream create (8, 16);
#pragma omp parallel sections num threads (2)

{
#pragma omp section

/* Producer task. */
{
gomp stream align push (s, A, 1);
for (i=1; i<=N; i++) {

elt e = ...;

A[i] = e;
gomp stream push (s, e);

}
gomp stream set eos (s);

}
#pragma omp section

/* Consumer task. */

{
for (i=1; i<=N; i++) {

elt t = gomp stream head (s);
gomp stream pop (s);
... = ... t ...;

}
gomp stream align pop (s, 1);

gomp stream destroy (s);
}

}

Figure 7: Auto-streamization of the first example

As the stream operations have blocking semantics, i.e.,
the producer waits until there is free space in the stream
and the consumer waits for elements in the stream, the
streams also provide synchronization between the pro-
ducer and consumer tasks. For this reason, all further
synchronization is superfluous and we can execute the
two tasks concurrently.

As the stream code shows, the original read operation
has been replaced with stream operations. However, the

write operation remains and the stream operation is only
added. This is due to the lack of a more precise inter-
procedural analysis, as we cannot know if subsequent
reads to that memory location remain. This represents
an important optimization opportunity.

3.4 Stream Benchmarks

The evaluation of all the benchmarks presented in this
paper is performed on an AMD Phenom 9550 machine
with 4 cores, running at 2.2 GHz under Linux kernel
2.6.24, and the following characteristics of the memory

hierarchy:

L1 cache line size 64 B
L1 cache 64 KB
L2 cache 512 KB per core
L3 cache 2 MB shared

RAM 4 GB

To evaluate the amount of computation that makes the
stream computations faster than the sequential execu-
tion, we generated, starting from the loop kernels of the
stream benchmarks, a set of benchmarks having more
and more computations per iteration as follows: a loop
iterates over all the elements of an array performing a
computational task storing the result of the processed
element back in the same array. The computational task
in the vector scaling stream benchmark is a scalar mul-
tiplication. In our benchmarks, we used a basic task that
contains more scalar computations: we used the compu-
tation of the Euclidean distance, sqrt(a ∗ a + b ∗ b). To
analyze the impact of the sequential computation load,
we aggregated several computations in Load1,...,
Load10 by repeating the basic task computation one to
ten times. An array of 32 MB is processed successively
by two or more filters. The code of the sequential case
for two filters and the corresponding streamized code
are presented in Figures 9 and 10. Figure 8 presents
the speedup of these synthetic stream benchmarks. For
a task load of one, the stream version is always slower
than the sequential execution, showing that the amount
of computation per task should be bigger. For a task
load of two, the streamized version begins to be prof-
itable starting with six concurrently executing threads.
For a task load of more than two, the streamization is
always beneficial.

The behaviour exhibited by these benchmarks proves
that there is more interest in streamizing than just paral-
lelization. The speedup achieved is superlinear in many
cases. For two and four tasks with a task load of eight

7



 0

 1

 2

 3

 4

 5

 6

 7

 8

 1024 512 256 128 64 32 16 8 4

S
pe

ed
up

Number of tasks

Task Load 1
Task Load 2
Task Load 3
Task Load 4
Task Load 8
Task Load 9

Task Load 10

Nb tasks 2 3 4 5 6 7 8 16 32 64
Load 1

tSeq 0.26 0.37 0.48 0.59 0.69 0.8 0.9 3.68 10.00 22.12
tStream 0.52 0.89 1.31 1.6 1.82 1.83 1.43 2.77 5.14 9.6

Speedup 0.5 0.42 0.37 0.37 0.38 0.44 0.63 1.33 1.94 2.3
Load 2

tSeq 0.73 1.06 1.4 1.99 2.82 3.64 4.47 11.11 24.28 50.73
tStream 0.88 1.23 1.51 2.01 2.26 2.26 1.96 3.96 7.23 13.74

Speedup 0.83 0.86 0.93 0.99 1.25 1.61 2.28 2.81 3.35 3.69
Load 3

tSeq 1.17 1.73 3.03 4.3 5.64 6.88 8.18 18.57 39.25 81.06
tStream 1.03 1.42 1.65 2.24 2.61 2.58 2.39 4.85 8.81 16.26

Speedup 1.14 1.22 1.84 1.92 2.16 2.67 3.42 3.83 4.45 4.98
Load 4

tSeq 1.64 3.17 4.89 6.67 8.4 10.17 11.87 25.63 53.82 109.19
tStream 1.24 1.64 1.86 2.74 3.06 2.96 3.08 5.5 10.10 19.16

Speedup 1.32 1.93 2.63 2.43 2.75 3.44 3.85 4.84 5.32 5.69
Load 8

tSeq 5.27 8.80 12.48 16.63 19.32 24.34 28.08 55.11 113.13 223.80
tStream 2.15 2.42 2.70 4.35 4.96 5.10 5.08 9.65 19.43 39.38

Speedup 2.45 3.63 4.62 3.82 3.89 4.77 5.52 5.71 5.82 5.68
Load 9

tSeq 6.04 10.14 14.60 17.86 22.54 26.38 31.66 65.81 128.08 270.48
tStream 2.31 2.46 2.68 4.83 5.32 5.52 5.77 12.10 22.82 43.78

Speedup 2.61 4.12 5.44 3.69 4.23 4.77 5.48 5.43 5.61 6.17
Load 10

tSeq 6.93 12.11 15.61 20.35 25.91 30.61 35.87 72.97 148.76 302.44
tStream 2.85 2.97 3.02 4.90 5.47 5.67 5.77 10.76 21.96 43.83

Speedup 2.43 4.07 5.16 4.15 4.73 5.39 6.21 6.78 6.77 6.90

Figure 8: Speedup of the streamization of stream benchmarks: the size of the sliding windows is set to 64B, matching
the size of L1 cache lines, the circular buffer contains 64KB matching the size of L1 cache, and the amount of
processed data is 32MB.

or more, the superlinear speedup is mostly due to an im-
proved usage of caches and an increased size of cache
available to the computation. As the tasks do not share a
same L1 cache, they do not pollute each-other’s caches.
We also achieved superlinear speedup for all the cases
where the speedup is above four as there are only four
hardware threads available. Such is the case starting at
a task load of three with more than 32 tasks or at a task
load of four with 10 or more tasks. Similar superlin-
ear behaviour can be observed for task loads of eight
or above, for most task numbers, this is also a result of
an improved cache behaviour. The drop in the speedup
when adding one more task to four tasks is due to the
fact that the processor that we are using has only four
cores, and the fifth task has to be scheduled with an-
other task on one of the four cores, slowing down the
whole pipeline. The L3 cache is filled up by the stream
buffers at about 32 tasks, making the speedup almost flat
and even decreasing in some cases.

This analysis and other similar analyses will allow us to
build a cost model that determines an appropriate task
granularity that the compiler should use for deciding the
split or aggregation of tasks in the automatic streamiza-
tion pass. The ideas about the cost model are expanded
in the next section together with potential improvements
of several parts of the compiler that can improve the sup-
port for manual and automatic streamization in GCC.

int *A = (int *) malloc (N * sizeof (int));

for (i=1; i<=N; i++)

A[i] = Load4 (A[i]);

for (i=1; i<=N; i++)

A[i] = Load4 (A[i]);

Figure 9: Sequential stream filters

int *A = (int *) malloc (N * sizeof (int));
gomp stream s = gomp stream create (4, 1000);

#pragma omp parallel sections num threads (2)
{
#pragma omp section

/* Producer task. */

{
int i;
for (i=1; i<=N; i++) {

elt = Load4 (A[i]);
gomp stream push (s, elt);

}
gomp stream set eos (s);

}
#pragma omp section

/* Consumer task. */

{
int i;

for (i=1; i<=N; i++) {
elt = gomp stream head (s);
gomp stream pop (s);

A[i] = Load4 (elt);
}
gomp stream destroy (s);

}
}

Figure 10: Streamized stream filters

8



4 Future Work

As we have seen in the previous section, the support for
streaming computations can be beneficial, but it also can
slow down the execution with respect to the sequential
execution due to the non-negligible cost of OpenMP par-
allelization and to the cost of synchronization of com-
munications via the stream buffer. Programmers can al-
ready use the stream library support directly in conjunc-
tion with OpenMP parallelization, but our aim is to add,
to the available tool-set of programmers, automatic and
language support for streamization. For this, there re-
main several tasks to be completed as described in this
section: on the language layer we advocate the adop-
tion of ACOTES in and out clauses to the pragma task,
which will make the use of streams easier when paral-
lelizing with OpenMP. On the compiler layer, a major
work on improving the precision of our static analyzers
of data dependences in interprocedural mode has to be
completed. On the runtime library layer we are investi-
gating dynamic adaptation of the library to the execution
context following feedback from the operating system
and hardware counters.

4.1 Language Support for Streams

As mentioned in Section 2, the Brook language im-
poses a blocking task semantics. The ACOTES lan-
guage extension is less restrictive: it can be used for both
blocking tasks and non blocking tasks by selecting the
number of sliding windows in the stream runtime library
to be equal to 1, in which case the full stream has to be
written and then read atomically. Because of this loss in
expressiveness, we advocate the use of the ACOTES ex-
tensions to the OpenMP standard. The standardization
of the in and out clauses to the pragma task and of the
stream library interface is a natural step that does not ne-
cessitate an excessive effort. In the contrary, Brook’s
C extensions are non-trivial, as the C standard does not
even define concurrency, making the Brook extensions
quite hard to integrate in the current C standard. The
implementation effort for supporting in GCC two addi-
tional clauses to the OpenMP pragma task is minimal,
making the ACOTES extensions the best candidate for
stream language support in GCC.

4.2 Improving GCC’s Analyses

The most important analysis for streamization is the
data dependence analysis. The precision of the data de-

pendence analysis can improve the detection of paral-
lel non-communicating tasks, and also allows detection
of producer-consumer patterns. The major weakness of
GCC’s data dependence analysis is that it is limited to
the code of a single procedure. This makes the anal-
ysis of code containing procedure calls impossible, re-
ducing the automatic streamization opportunities. In-
terprocedural analyses (IPA) improve the precision of
analyzed information by adding the information of the
function call context. An IPA infrastructure has been
integrated in GCC 4.1 and continues to be improved:
the IPA mode was extended to the SSA representation
for enabling constant optimization passes such as IPA
constant propagation. To implement an interprocedural
data dependence analysis, the value range propagation
pass [13] has to be extended in IPA mode. Then, using
this machinery, it is possible to gather and then propa-
gate an abstract view of the reads and writes to memory
that a procedure performs. This technique is known as
array regions [10, 9]: reads and writes to an array are
represented as constraint systems that are propagated in
interprocedural mode.

4.3 Improving the Task Load

As we have seen in Section 3.4, the task load has a
strong impact on the speedup that streamization can
achieve. We need to be able to generate tasks that have
sufficient load to attain a high level of speedup. One
way this could be achieved is to transform the generated
code in a manner quite similar to a loop unroll, aggregat-
ing in a single iteration multiple base iterations and per-
forming stream operations on blocks of elements. We
believe this may allow us to generate tasks that have a
sufficient load and that would therefore present similar
speedups as the higher task loads in the Figure 8.

4.4 Improving Stream Runtime

To uncover as much parallelism as possible, it might
prove interesting to generate tasks at the finest granu-
larity and provide a task fusion capability in the run-
time system. This would require a slight modification
of the way tasks are defined, a task then being the pro-
duction of a single element or its consumption. As such,
the runtime system could dynamically decide to fuse
a producer task with a consumer task by invoking the
consumer task immediately after the producer, without

9



stream operations. In the case in which the streamiza-
tion of two tasks proves inefficient at runtime, their fu-
sion should allow us to regain near-sequential perfor-
mance.

We believe that specific support for NUMA architectures
might prove profitable. As memory accesses to non-
local memory become more expensive, a certain level of
communication aggregation could reduce the increased
latency of memory operations. Depending on the imple-
mentation of streams for NUMA architectures, the data
can be stored either on the producer or on the consumer
side. For example, if the data is stored on the consumer
side, one possibility would be to buffer stream write op-
erations on the producer side and only write aggregated
blocks of elements to the consumer memory.

5 Conclusion

This paper presents several manual and automatic tech-
niques for generating stream code from sequential code
as well as some important performance considerations
and optimization opportunities. These techniques are
then applied to the implementation of an automatic
streamization framework in GCC, followed by a discus-
sion on the performance results that our implementa-
tion achieved on several stream benchmarks. As we
have seen, the profitability is strongly connected to the
amount of work we can isolate per task as well as to
the number of tasks. We propose a maximal partition-
ing of tasks in the compiler, leaving the runtime library
to decide on the fusion of tasks following the amount of
computation per task. We also proposed improvements
to the current GCC static analyses infrastructure for more
precise data dependence information. This information
is crucial to the translation of sequential code to SIMD
and MIMD.

6 Acknowledgments

We would like to thank Razya Ladelsky, Uzi Shvadron,
and Ayal Zaks from IBM Haifa, and our colleagues from
the ACOTES project for the fruitful discussions on this
topic.

References

[1] ACOTES: Advanced Compiler Technologies for
Embedded Streaming.

http://www.hitech-projects.com/
euprojects/ACOTES/.

[2] ACOTES deliverable d2.1.
http://www.hitech-projects.com/
euprojects/ACOTES/deliverables/
deliverable_D2.1_v1.0.pdf.

[3] The StreamIt language. http:
//www.cag.lcs.mit.edu/streamit/.

[4] The Brook Language.
http://graphics.stanford.edu/
projects/brookgpu/lang.html.

[5] The CUDA Language. http://www.
nvidia.com/object/cuda_home.html.

[6] The OpenMP Standard.
http://www.openmp.org/.

[7] R. Allen and K. Kennedy. Optimizing Compilers
for Modern Architectures. Morgan and Kaufman,
2002.

[8] E. Ayguadé, N. Copty, A. Duran, J. Hoe-flinger,
Y. Lin, F. Massaioli, E. Su, P. Unnikrishnan, and
G. Zhang. A proposal for task parallelism in
OpenMP. In 3rd International Workshop on
OpenMP (IWOMP), June 2007.

[9] B. Creusillet. Array Region Analyses and
Applications. PhD thesis, Dec. 1996.

[10] B. Creusillet and F. Irigoin. Interprocedural array
region analyses. IJPP, 24(6):513–546, Dec. 1996.

[11] R. M. Karp, R. E. Miller, and S. Winograd. The
organization of computations for uniform
recurrence equations. J. ACM, 14(3):563–590,
1967.

[12] L. Lamport. The parallel execution of do loops.
Commun. ACM, 17(2):83–93, 1974.

[13] D. Novillo. A propagation engine for GCC. In
GCC Developers Summit, pages 175–185, 2005.
http://www.gccsummit.org/2005.

[14] R. Rangan, N. Vachharajani, M. Vachharajani, and
D. August. Decoupled software pipelining with
the synchronization array. In PACT, Sept. 2004.

10


