
A Proposal for lastprivate Clause on OpenMP

task Pragma

Antoniu Pop and Sebastian Pop

Centre de Recherche en Informatique, MINES ParisTech, France
apop@cri.ensmp.fr

Compiler Performance Engineering, Advanced Micro Devices, Austin, Texas
sebastian.pop@amd.com

Abstract. Several implementations extend OpenMP with pragmas for
programming heterogeneous systems using stream primitives. This paper
surveys some of these extensions and then provides a minimal extension
to the OpenMP3.0 standard to support data streams between tasks. We
present a prototype implementation of the proposed extension in the
GCC compiler and its runtime GOMP library.

1 Introduction

For programming devices with non uniform memory spaces, programmers use
data transmission primitives, such as MPI’s send and recv. As we will see in this
paper, OpenMP3.0 could support the notion of message passing via the firstpri-

vate and lastprivate constructs. The missing part for the task pragma defined in
OpenMP3.0 is the specification of the lastprivate clause that would allow the def-
inition of outputs from a task using private memory. This extension of OpenMP

does not change the shared memory model of OpenMP, but intends to permit the
translation of tasks and their communications on distributed memory systems.

The paper starts by presenting previous work on manual techniques for writ-
ing code with data streams. Section 3 presents our extension to OpenMP3.0, and
Section 4 describes some of the optimizations that this extension would enable.
Finally, Section 5 describes and evaluates the implementation of our prototype
based on GCC4.4 compilers.

2 Related Work

Stream programming has recently attracted a lot of attention as an alternative
to other forms of parallel programming that offers an improved programmabil-
ity and may, to a certain extent, reduce the severity of the memory wall. Many
languages and libraries are available for programming stream applications. Some
are general purpose programming languages that hide the underlying architec-
ture’s specificities, while others are primarily graphics processing languages, or

2 Antoniu Pop and Sebastian Pop

shading languages. Some hardware vendors also propose low-level interfaces for
their GPUs.

The StreamIt language [4] is an explicitly parallel programming language that
implements the Synchronous Data Flow (SDF) programming model. It contains
syntactic constructs for defining programs structured as task graphs. Tasks con-
tain Java-like code that is executed in a sequential mode. StreamIt provides three
interconnection modes: the Pipeline allows the connection of several tasks in a
straight line, the SplitJoin allows for nesting data parallelism by dividing the
output of a task in multiple streams, then merging the results in a single output
stream, and the FeedbackLoop allows the creation of streams from consumers
back to producers. The channels connecting tasks are implemented either as
circular buffers, or as message passing for small amounts of control information.

The Brook language [5] provides language extensions to C with single pro-
gram multiple data (SPMD) operations that work on streams, i.e. control flow
is synchronized at communication/synchronization operations. Streams are de-
fined as collections of data that can be processed in parallel. For example:
“float s<100>;” is a stream of 100 independent floats. User defined functions
that operate on streams are called kernels and use the “kernel” keyword in the
function definition. The user defines input and output streams for the kernels
that can execute in parallel by reading and writing to separate locations in the
stream. Brook kernels are blocking: the execution of a kernel must complete be-
fore the next kernel can execute. This is the same execution model that is avail-
able on graphics processing units (GPUs): a task queue contains the sequence of
shader programs to be applied on the texture buffers. The CUDA infrastructure
from NVIDIA [6] is similar to Brook, but also invites the programmer to manage
local scratchpad memory explicitly: in CUDA, a block of threads, assigned to
run in parallel on the same core, share access to a common scratchpad memory.
CUDA is lower level than Brook from a memory control point of view. The key
difference is that CUDA has explicit management of the per-core shared mem-
ory. Brook was designed for shaders: it produces one output element per thread,
any element grouping is done using input blocks reading from main memory
repeatedly.

The ACOTES project [1] proposes extensions to the OpenMP3.0 standard
that can be used for manually defining complete task graphs, including asyn-
chronous communication channels: it adds new constructs and clauses as for
example a new task pragma with clauses for defining inputs and outputs [2, 3,
8]. The implementation of the ACOTES extensions to OpenMP3.0 includes two
parts: the compiler part translates the pragma clauses to calls to a runtime li-
brary extending the OpenMP library. The ACOTES extensions, are an attempt
to make communication between tasks explicit. Channels can be implemented
on top of shared memory as well as on top of message passing. ACOTES exten-
sions can be classified MIMD, as several tasks can execute in parallel on different
data streams. This aims to shift the memory model of OpenMP from shared
memory to distributed memory for the task pragmas. The resulting ACOTES

programming model can be compared to the Brook language: these languages

A Proposal for lastprivate Clause on OpenMP task Pragma 3

both provide the notion of streams of data flowing through processing tasks that
can potentially contain control flow operations. The main difference between
these two programming languages is in their semantics. In the execution model
of a Brook task, the task is supposed to process all the data contained in the
stream before executing another task. The tasks in the ACOTES semantics are
non-blocking: the execution of a task can proceed as soon as some data is avail-
able in its input streams. The main limitation of the Brook language is due to
the intentionally blocking semantics that follows the constraints of the target
hardware, i.e. GPUs, where the executing tasks have to be loaded on the GPU,
an operation that has a non-negligible cost. The design of the Brook language
and of CUDA follow these constraints, restricting the expressiveness of the lan-
guage, intentionally. The ACOTES programming model does not contain these
limitations and the runtime library support of the ACOTES streams can dynam-
ically select the blocking semantics of streams to fit the cost constraints of the
target hardware.

Another interesting approach to generate the data transmission towards the
accelerator boards is that of the CAPS enterprise: codelets are functions [11]
whose parameters can be marked with input, output or inout. The codelets are
intended to be executed remotely after the input data has been transmitted.

Some recent developments of the ICC compiler implement OpenMP extensions
for generating code for processors with accelerators: data can be sent, retrieved
and potentially left in the memory of the remote accelerator.

In the next section, we describe a minimal change to the OpenMP3.0 task

pragmas to allow the specification of data channels between tasks.

3 OpenMP extension for enabling streaming

We propose an extension of the OpenMP3.0 standard to allow for lastprivate

clauses to be used on task constructs. This extension does not change the se-
mantic of the lastprivate clause. As defined by the OpenMP3.0 standard, the
lastprivate clause provides a superset of the functionality provided by the private

clause.

3.1 Description of the extension

We extend the OpenMP semantic for task constructs: a list item that appears in
a lastprivate(list) clause of a task construct will be assigned the last value within
the task upon completion. The list of modifications required to the standard is
given in Appendix A.

Due to the semantic of the task construct, an implicit synchronization point
is created before assigning the original list item upon completion of the task to
avoid data races. This behaviour can be altered by optimizations as we will see
in Section 4.

The consequence of this synchronization is that a thread that encounters
a task construct with a lastprivate clause will suspend the current task region,

4 Antoniu Pop and Sebastian Pop

which may not be resumed until the generated task is completed. This ensures
that the value of the list items that appear in lastprivate(list) clauses is prop-
erly updated before the encountering thread proceeds. The synchronization will
therefore prevent concurrency and void any benefit of generating a task. In the
case where no optimization is possible, such a task construct should ultimately
be ignored and the code executed sequentially.

3.2 Motivation for the extension

Our primary motivation for the introduction of this extension is to allow tasks
to explicitly assume the roles of producers and consumers of data. This is often
the case implicitly when tasks use shared clauses and thus communicate through
shared memory, but the synchronization requirements make this impractical.

The semantic of firstprivate and lastprivate clauses is very close to what the
Stream Programming Model of the ACOTES project [3] calls input and output

clauses. The firstprivate clause corresponds to data that is consumed by the task
(flows in), while the lastprivate clause corresponds to data that is produced by
the task (flows out). The knowledge of data flow between tasks helps the static
analysis.

while (input = get data()) {

filter 1 (input, &temp);

filter 2 (temp, &result);

write (result);
}

while (... get_data())

Exit

filter_1 (...)

filter_2 (...)

write (...)

Entry Exit

while (... get_data())

filter_1 (...)

filter_2 (...)

write (...)

Entry

Control Dependence GraphControl Flow Graph

while (... get_data())

while (... get_data()) filter_1 (...) filter_2 (...) write (...) while (... get_data()) filter_1 (...) filter_2 (...)

filter_1 (...)

filter_2 (...)

write (...)

while (... get_data())

filter_1 (...)

filter_2 (...)

Sequential

Pipeline

Fig. 1. A simple pipeline of filters (left), where arrows represent flow dependences, and
the corresponding Control Flow Graph (CFG), Control Dependence Graph (CDG) and
the execution trace.

In order to understand the necessity of the extension and the related opti-
mizations, let us consider the example on Figure 1. This example is a simple
while loop where some input data is read and fed to a pipeline of filters, with

A Proposal for lastprivate Clause on OpenMP task Pragma 5

a final write of the result. Though it may appear that this pipeline is easy to
detect with static analysis, without even needing OpenMP annotations, the con-
trol dependences will inhibit any such automatic optimization as long as it is
impossible to determine whether the filter functions can branch out of the loop
(dashed edges of the CFG). As we can see on the CDG, there is no room for
concurrency and the resulting execution trace would be serialized by the dashed
edges representing control dependences.

However, the semantic of the OpenMP3.0 task constructs is such that the
responsibility for ensuring that the filters are well-behaved is left to the pro-
grammer (for example that they do not throw exceptions or catch them ap-
propriately). The code on Figure 2 is an example of how this pipeline of filters
should be annotated. The CFG shows that, because of the restrictions on the
code that can be inside a task construct, there are no longer edges from the fil-
ters to the exit node, which in turn translates on the CDG in significantly fewer
and less restrictive control dependences. The possible execution trace shows that
concurrency is no longer impossible.

Though the execution trace shows that pipeline parallelism is now possible,
we cannot remove the lastprivate clauses because the data dependences would no
longer be enforced. The only alternative would be to replace them with shared

clauses and manual synchronization.
We will now propose a very simple expansion scheme for lastprivate clauses

that provides for an easy and correct implementation.

3.3 Expansion of lastprivate clauses for task constructs

Before considering any optimizations, let us propose a simple expansion rule for
lastprivate clauses on OpenMP task constructs. We will follow the earlier proposed
semantic and introduce a synchronization point before assigning the new value
to any item appearing on the lastprivate clause.

This expansion scheme is only meant as a way of trivially ensuring the va-
lidity of the generated code in non-optimizing compilers. It is by no means the
objective of this extension as it results in no performance improvement and in
most cases would only degrade performance. The expansion scheme has already
been implemented in GCC and is freely available on the streamOMP branch.

The implementation is quite straightforward and only marginally alters the
original code. In the GCC implementation of OpenMP, the expansion of firstpri-

vate and lastprivate clauses is implemented by copying the variables in dedicated
data structures for copy-in (omp data i)and copy-out (omp data o) that are ac-
cessible to the task for reading input data and storing output data. We do not
modify this, but just add the semaphore synchronization.

When a lastprivate(list) clause appears on a task construct, for all items
x ∈ list copy-out code needs to be generated. In the outlined code of the
task, the copy statements {∀ x ∈ list, omp data o.x = x; } will be added at
the end of the task as well as a synchronization post call. In the original context,
after the task generation call, a corresponding synchronization wait call as well
as the statements {∀ x ∈ list, x = omp data o.x; } are inserted.

6 Antoniu Pop and Sebastian Pop

#pragma omp parallel
{

#pragma omp single
{

while (input = get data())
{

#pragma omp task firstprivate (input) lastprivate (temp)
filter 1 (input, &temp);

#pragma omp task firstprivate (temp) lastprivate (result)
filter 2 (temp, &result);

#pragma omp task firstprivate (result)
write (result);

}
}

}

while (... get_data())

Exit

filter_1 (...)

filter_2 (...)

write (...)

Entry Exit

while (... get_data())

Entry

filter_1 (...)

write (...)

filter_2 (...)

Control Flow Graph Control Dependence Graph

while (... get_data())

while (... get_data()) filter_1 (...) filter_2 (...) write (...) while (... get_data()) filter_1 (...) filter_2 (...)

filter_1 (...)

filter_2 (...)

write (...)

while (... get_data())

filter_1 (...)

filter_2 (...)

write (...)

while (... get_data())

filter_1 (...)

filter_2 (...)

write (...)

while (... get_data())

filter_1 (...)

filter_2 (...)

Sequential

Pipeline

Fig. 2. Pipeline of filters with OpenMP annotations and the corresponding Control
Flow Graph (CFG), Control Dependence Graph (CDG) and a possible execution trace.
The flow dependences marked by arrows in the code must be satisfied.

In order to illustrate the diverse transformations we will use the same exam-
ple of filter pipeline. We first apply the expansion to the code of the example
on Figure 1. The resulting code is presented on Figure 3. The strong synchro-
nization introduced all but serializes the execution. Despite the fact that the
outlined code of the two tasks run on different threads, the trace remains similar
to the sequential trace with additional overhead. All existing dependences are

A Proposal for lastprivate Clause on OpenMP task Pragma 7

while (input = get data()) {

omp data i 1.input = input;
generate task (outlined task 1, ...);

wait (semaphore temp);
temp = omp data o 1.temp;

omp data i 2.temp = temp;
generate task (outlined task 2, ...);

wait (semaphore result);
result = omp data o 2.result;

omp data i 3.result = result;
generate task (outlined task 3, ...);

}

void outlined task 1 (...) {
input = omp data i 1.input;

filter 1 (input, &temp);
omp data o 1.temp = temp;
post (semaphore temp);

}

void outlined task 2 (...) {
temp = omp data i 2.temp;

filter 2 (temp, &result);
omp data o 2.result = result;
post (semaphore result);

}

void outlined task 3 (...) {
result = omp data i 3.result;

write (result);
}

while (... get_data())

while (... get_data()) filter_1 (...) filter_2 (...) write (...) while (... get_data()) filter_1 (...) filter_2 (...)

filter_1 (...)

synch©

filter_2 (...)

synch©

write (...)

while (... get_data())

Sequential

Pipeline

Fig. 3. Code generated by the expansion of the task directives with firstprivate and
lastprivate clauses. The execution trace shows that there is nothing to be gained without
further work.

preserved, which ensures the validity of the transformation. Of course in this
case, no concurrency is possible.

However, in the next section, we will see that in some cases we can do better
than to simply serialize the execution of tasks with lastprivate clauses.

4 Compiler optimizations

This section describes some of the optimizations that the extension we propose
would enable. These optimizations are currently being implemented in the GCC

compiler. Though no preliminary results are available for the automatic gen-
eration of optimized code at this time, the evaluation Section 5 presents some
results obtained by hand-optimizing the code, thus demonstrating the potential
of the automatic optimization being implemented.

The most important optimization enabled by this extension is to allow tasks
to communicate through streams. We will refer to this optimization as streamiza-

8 Antoniu Pop and Sebastian Pop

tion. As we have seen, the use of firstprivate and lastprivate clauses makes the data
flow between tasks explicit. It is possible, with some static dependence analysis,
to build a taskgraph and identify the channels of communication between tasks.

We will again use the example on Figures 1 and 2 to illustrate the opti-
mizations. First of all, we note that no data-parallelism can readily be exploited
because of the way input data is accessed and task parallelism would be very
hard, or expensive, to synchronize. Task parallelism would be a possibility, but
synchronization is required to satisfy the flow dependences. The only appropriate
form of parallelism in this case is pipelining. Our objective is to generate the code
presented on Figure 4. In this example, we use a stream communication library
where streams behave as blocking FIFO queues, therefore ensuring synchroniza-
tion of flow dependences. Details on the semantic and the implementation of the
streaming library can be found in [10]. The implementation is available in the
GOMP library of GCC. An alternative to stream communication would be to use
MPI sends and recvs for distributed platforms, though this requires that tasks
access no shared data. The very interesting work by Millot et al. [9] explores the
idea of compiling OpenMP annotated code for distributed systems.

// Thread 0:
while (input = get data()) {

push (stream input, input);

}

// Thread 1:
while (!end of stream (stream input) {

input = head (stream input);
pop (stream input);

filter 1 (input, &temp);

push (stream temp, temp);
}

// Thread 2:
while (!end of stream (stream temp) {

temp = head (stream temp);
pop (stream temp);

filter 2 (temp, &result);

push (stream result, result);
}

// Thread 3:
while (!end of stream (stream result) {

result = head (stream result);
pop (stream result);

write (result);
}

Fig. 4. Resulting code after streamization. Generating this code is the objective of
this optimization, though the current implementation in GCC has not yet reached this
point. The execution trace is similar to that on Figure 2.

The stream communication is useful here because it buffers (privatizes) the
values produced until the consumer can use them. This means that the flow
dependences they enforce are somewhat relaxed. The proposed OpenMP anno-
tated code uses our extension as a means of synchronizing the tasks. This is
necessary because of the flow dependences present between the filters (e.g., fil-

A Proposal for lastprivate Clause on OpenMP task Pragma 9

ter 1 writes to temp and filter 2 reads that value). The presence of firstprivate

and lastprivate clauses makes explicit the need to enforce these dependences. If
we were to consider writing an equivalent code without resorting to the usage of
lastprivate clauses on task constructs, we would need to use shared clauses and
the appropriate manual synchronization. If the programmer does not annotate
the code with OpenMP directives, then static analysis may fail due to the lack
of knowledge on the side-effects of the filter functions.

In order to generate the code on Figure 4 from the OpenMP annotated code
on Figure 2, we need some static analysis, both for control and data depen-
dences, to ensure that the transformation is valid. If for example we modify the
code of the example on Figure 2 and add some code between the two task con-
structs containing the filters and that code accesses the variable temp, then the
streamization is no longer possible.

5 Evaluation of the GCC Prototype

The current implementation of this extension in GCC is still limited to the basic
expansion of lastprivate clauses and generates the serializing synchronization
described in Section 3.3. As the implementation of the optimizations is still
under way, we will first exmine the slowdowns incurred compared to sequential
execution in the case where no optimizations are performed. We will also show, as
a motivation for the optimizations under development, what can be gained from
streamizing the code. In this second experiment, we write the code as it would be
generated by an optimizing compiler, with no additional manual optimizations.

As a basis for evaluation, we will consider a kernel extracted from the GNU

Radio project [7]. This kernel was originally extracted by Marco Cornero, from
STMicroelectronics, and further adapted for streaming by David Rodenas-Pico,
from the Barcelona Supercomputing Center, for the needs of the ACOTES project
[1]. We also slightly modified the kernel for our experiments, by annotating it
with OpenMP task pragmas with firstprivate and lastprivate clauses. The main
loop of the annotated kernel is presented on Figure 6.

The evaluation of all the benchmarks presented in this paper is performed
using a modified version of GCC4.4 available in the streamOMP branch. The
experimental setup consists of the two platforms presented, along with the ex-
perimental results, on Figure 5. The implementation of the streaming library
takes advantage of the memory hierarchy by aggregating communication in read-
ing/writing windows. These windows are at least of the size of an L1 cache line
which reduces false sharing and improves performance [10].

As we expected, the slowdowns incurred in the case of the basic expansion
scheme, where semaphore post/wait synchronization is used, are quite high. The
execution is between 1.6 and 4.2 times slower than the sequential counterpart.
Though it may be possible to reduce the overhead responsible for these slow-
downs, we consider that, when it is impossible to optimize, task constructs with
lastprivate clauses should be inlined, or simply not expanded. As the thread

10 Antoniu Pop and Sebastian Pop

Platform 1: Dual AMD OpteronTM

Barcelona B3 CPU 8354 with 4 cores at
2.2GHz, running under Linux kernel 2.6.18,
and the following characteristics of the
memory hierarchy:

– L1 cache line size: 64 B
– 64 KB per core L1 cache
– 512 KB per core L2 cache
– 2 MB per chip shared L3 cache
– 16 GB RAM

Platform 2: IBM JS22 Power6 with 4 cores,
each two-way SMT, at 4GHz, running un-
der Linux kernel 2.6.16. Memory character-
istics:

– L1 cache line size: 128 B
– 64 KB L1 cache
– 2 MB per core L2 cache
– 8 GB RAM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Platform
 1

Platform
 2

Platform
 3

S
pe

ed
up

Sequential
Post/Wait synchronized

Streamized

Platform 3: Intel R© CoreTM2 Quad CPU Q9550 with 4 cores at 2.83GHz, running under
Linux kernel 2.6.27, and the following characteristics of the memory hierarchy:

– L1 cache line size: 64 B
– 32 KB per core L1 cache
– 2 independent 6 MB shared L2 caches
– 4 GB RAM

Fig. 5. Speedups to sequential execution obtained on the GNU Radio kernel presented
on Figure 6. We evaluate the speedups of the automatically generated post/wait syn-
chronization and the hand-streamized code on both test platforms.

encountering the task waits for its completion, there is nothing to gain from
executing it on another thread and synchronizing upon completion.

On the other hand, the streamized code shows reasonably high speedups.
On average, the execution of the hand-streamized code is more than three times
faster than the sequential version on all platforms. Such results are a strong
incentive to continue the development of the streamization pass in GCC. We note
that the load balance is not perfect yet as only two of the thirteen filters present
in the application have a high arithmetic intensity. This results in equivalent
speedups on all platforms despite the fact that platforms 1 and 2 have 8 hardware
threads whereas platform 3 only has 4 hardware threads.

We believe that extending the OpenMP standard by allowing lastprivate

clauses for task constructs is a minimal and efficient way of exploiting pipeline
parallelism in OpenMP.

A Proposal for lastprivate Clause on OpenMP task Pragma 11

It also provides for some interesting optimization opportunities. The stream-
ing library can be easily implemented over a message passing interface, therefore
allowing tasks that do not communicate through shared memory (i.e., no shared

clause) to be executed on processors that do not have access to the main thread’s
memory.

6 Conclusion

We proposed to extend the OpenMP3.0 standard by defining the semantics of
the lastprivate clause to the task pragama. This is a natural way to extend the
OpenMP3.0 specification that already defines the semantics of the lastprivate

clause in the context of other pragmas. Furthermore, we focused on minimiz-
ing the changes needed to the current standard, to minimize the risk of errors
introduced in the standard and the ease of implementation in compilers.

7 Acknowledgments

We would like to thank our colleagues from the ACOTES project for the fruitful
discussions on this topic.

References

1. ACOTES: Advanced Compiler Technologies for Embedded Streaming. http://

www.hitech-projects.com/euprojects/ACOTES/.
2. ACOTES deliverable d2.1. http://www.hitech-projects.com/euprojects/

ACOTES/deliverables/deliverable_D2.1_v1.0.pdf.
3. ACOTES deliverable d3.2. http://www.hitech-projects.com/euprojects/

ACOTES/deliverables/acotes-d3.2-final.pdf.
4. The StreamIt language. http://www.cag.lcs.mit.edu/streamit/.
5. The Brook Language. http://graphics.stanford.edu/projects/brookgpu/

lang.html.
6. The CUDA Language. http://www.nvidia.com/object/cuda_home.html.
7. The GNU Radio project. http://www.gnu.org/software/gnuradio/.
8. P. Carpenter, D. Rdenas, X. Martorell, A. Ramrez, and E. Ayguad. A streaming

machine description and programming model. In S. Vassiliadis, M. Berekovic,
and T. D. Hmlinen, editors, SAMOS, volume 4599 of Lecture Notes in Computer
Science, pages 107–116. Springer, 2007.

9. D. Millot, A. Muller, C. Parrot, and F. Silber-Chaussumier. Step: A distributed
openmp for coarse-grain parallelism tool. In R. Eigenmann and B. R. de Supinski,
editors, IWOMP, volume 5004 of Lecture Notes in Computer Science, pages 83–99.
Springer, 2008.

10. A. Pop, S. Pop, H. Jagasia, J. Sjödin, and P. H. J. Kelly. Improving GNU com-
piler collection infrastructure for streamization. In Proceedings of the 2008 GCC
Developers’ Summit, pages 77–86, 2008. http://www.gccsummit.org/2008.

11. S. B. R. Dolbeau and F. Bodin. Hmpp: A hybrid multi-core parallel programming
environment. In Workshop on General Purpose Processing on Graphics Processing
Units (GPGPU 2007), 2007.

12 Antoniu Pop and Sebastian Pop

#pragma omp parallel
{

#pragma omp single
{

while (16 == fread (read buffer, sizeof (float), 16, input file))
{

for (i = 0; i < 8; i++)
{

pair.first = read buffer[i*2];
pair.second = read buffer[i*2 + 1];

#pragma omp task firstprivate (pair, fm qd conf) lastprivate (fm qd value)
fm quad demod (&fm qd conf, pair.first, pair.second, &fm qd value);

#pragma omp task firstprivate (fm qd value, lp 11 conf) lastprivate (band 11)
ntaps filter ffd (&lp 11 conf, 1, &fm qd value, &band 11);

#pragma omp task firstprivate (fm qd value, lp 12 conf) lastprivate (band 12)
ntaps filter ffd (&lp 12 conf, 1, &fm qd value, &band 12);

#pragma omp task firstprivate (band 11, band 12) lastprivate (resume 1)
subctract (band 11, band 12, &resume 1);

#pragma omp task firstprivate (fm qd value, lp 21 conf) lastprivate (band 21)
ntaps filter ffd (&lp 21 conf, 1, &fm qd value, &band 21);

#pragma omp task firstprivate (fm qd value, lp 22 conf) lastprivate (band 22)
ntaps filter ffd (&lp 22 conf, 1, &fm qd value, &band 22);

#pragma omp task firstprivate (band 21, band 22) lastprivate (resume 2)
subctract (band 21, band 22, &resume 2);

#pragma omp task firstprivate (resume 1, resume 2) lastprivate (ffd value)
multiply square (resume 1, resume 2, &ffd value);

fm qd buffer[i] = fm qd value;
ffd buffer[i] = ffd value;

}

#pragma omp task firstprivate (fm qd buffer, lp 2 conf) lastprivate (band 2)
ntaps filter ffd (&lp 2 conf, 8, fm qd buffer, &band 2);

#pragma omp task firstprivate (ffd buffer, lp 3 conf) lastprivate (band 3)
ntaps filter ffd (&lp 3 conf, 8, ffd buffer, &band 3);

#pragma omp task firstprivate (band 2, band 3) lastprivate (output1, output2)
stereo sum (band 2, band 3, &output1, &output2);

#pragma omp task firstprivate (output1, output2, output file, text file)
{

output short[0] = dac cast trunc and normalize to short (output1);
output short[1] = dac cast trunc and normalize to short (output2);
fwrite (output short, sizeof (short), 2, output file);
fprintf (text file, ¨%-10.5f %-10.5f\n¨, output1, output2);

}
}

}
}

Fig. 6. Kernel extracted and adapted from the GNU Radio project [7] with OpenMP

annotations. The lastprivate clauses on tasks enable streamization.

A Proposal for lastprivate Clause on OpenMP task Pragma 13

A Proposed changes to the OpenMP3.0 standard

We propose the following changes to the OpenMP3.0 standard:

– In Section 2.7 task Construct, add the clause lastprivate(list).
– In Section 2.9.3.5 lastprivate clause, add the semantics of lastprivate used on

a task pragma: a list item that appears in a lastprivate(list) clause of a task

construct will be assigned the last value within the task upon completion.

