
A Stream-Computing Extension to OpenMP

Antoniu Pop1 and Albert Cohen2

1 Centre de Recherche en Informatique, MINES ParisTech, France
2 INRIA Saclay and LRI, Paris-Sud 11 University, France

Abstract
This paper introduces an extension to OpenMP3.0 enabling
stream programming with minimal, incremental additions
that seamlessly integrate into the current specification. The
stream programming model decomposes programs into tasks
and explicits the flow of data among them, thus exposing data,
task and pipeline parallelism. It helps the programmers to ex-
press concurrency and data locality properties, avoiding non-
portable low-level code and early optimizations. We survey
the diverse motivations and constraints converging towards
the design of our simple yet powerful language extension, and
we present experimental results of a prototype implementa-
tion in a public branch of GCC 4.5.

1 Introduction
The performance of single-threaded applications is expected
to stagnate with new generations of processors. Increasing
performance requires changing the code structure to harness
complex parallel hardware and memory hierarchies. But this
is a nightmare for programmers: translating more processing
units into effective performance gains involves a never-ending
combination of target-specific optimizations. These manual
optimizations involve subtle concurrency concepts and non-
deterministic algorithms, as well as complex transformations
to enhance memory locality. Optimizing compilers and run-
time libraries no longer shield programmers from the com-
plexity of processor architectures, and the gap to be filled by
programmers increases with every processor generation.

High-level languages are designed to express
(in)dependence, communication patterns and locality
without reference to any particular hardware, leaving
compilers and runtime systems with the responsibility of
lowering these abstractions to well-orchestrated threads and
memory management. In particular, stream programming has
recently attracted a lot of attention. It is a widely applicable
form of parallel programming that guarantees functional
determinism, a major asset in the productivity race. It is
also conducive to making relevant data-flow explicit and
to structuring programs in ways that allow simultaneously
exploiting pipeline, data and task parallelism. Stream com-
putations also help reduce the severity of the memory wall in
two complementary ways: (1) decoupled producer/consumer
pipelines naturally hide memory latency; and (2) they favor
local, on-chip communications, bypassing global memory.

While many languages have been designed to exploit pipeline
parallelism, we believe it is more interesting and sufficient to
introduce minimal and incremental additions to an existing
and well-established language.

This paper introduces an extension to the OpenMP3.0 lan-
guage [20] to enable stream programming. It requires only
minor additions that seamlessly integrate in the current lan-
guage specification. We detail the motivation of our work
and present the extension as well as the experimental results
of an early implementation in a public branch of GCC 4.5.

The rest of the paper is structured as follows. Section 2 dis-
cusses our motivation and the related work. Section 3 details
the considerations that have driven the design of our stream-
ing extension. Section 4 presents the extension to OpenMP3.0
we propose. Section 5 defines the semantics of the new con-
structs and validates the execution model. Section 6 evalu-
ates our implementation on realistic applications and bench-
marks. We conclude by summarizing our contributions and
discussing work in progress and future work in Section 7.

2 Motivation and related work
Many languages and libraries are being developed for the
stream-computing model. Some are general purpose pro-
gramming languages that hide the underlying architecture’s
specificities, while others are specifically targeted at accel-
erator architectures. While a complete survey is outside the
scope of this paper, we present a selection of the most related
efforts in this field. We also discuss the motivations and con-
straints that drive our proposal.

Data-parallel execution puts a high pressure on the mem-
ory bandwidth of multi-core processors. There is a well
known tradeoff between synchronization grain and private
memory footprint, as illustrated by performance models for
bulk-synchronous data parallel programs [3]. But there are
few answers to the limitations of the offchip memory band-
width of modern processors. Pipeline parallelism provides
a more scalable alternative to communication through main
memory, as the communication buffers can be tailored to sit
in the caches, effectively making cores communicate through
a shared cache or through the cache coherence protocol. In
addition, the choice of developing streaming languages for
accelerator hardware [14] is partly due to the prohibitive la-
tency of accessing the main memory.

Furthermore, a stream-programming model naturally ex-
poses data, task and pipeline parallelism through its high-

1



level semantics, avoiding the loss in expressiveness of other
parallel-programming models. A stream computation is di-
vided in pipeline stages, or filters, where the producer-
consumer relationships are explicit. Stages can be either se-
quential, if there is a dependence between successive execu-
tions of the stage, or parallel, in which case, the stage can
be replicated at will for load balancing and/or exploiting data
parallelism. The sequential filters are an issue that is shared
with other forms of parallelism as it stems from the presence
of state in the filter, or equivalently from a loop-carried de-
pendence. Closely related to pipelining, doacross paralleliza-
tion [6], can be used in such cases, but it is more restrictive
and requires communication of the state between threads.

Because of this problem, there are applications where the
use of pipelining is the only efficient solution for paralleliza-
tion. As an example, the recent study [15] by Pankratius et
al. of the parallelization of Bzip2 shows that this applica-
tion is not only hard to parallelize, but more specifically that
only pipelining allows it to be efficient and to achieve de-
cent scalability levels. The authors of the study remark that
OpenMP is not well suited for parallelizing Bzip2, but this
was reversed by implementing FIFO queues to communicate
between tasks, making it one of the best choices. In this pa-
per, we want to show that it is neither necessary to develop
a new language for streaming, nor to require developers to
write the pipelining code by hand.

The StreamIt language [19] is an explicitly parallel pro-
gramming language rooted in the Synchronous Data Flow
(SDF) model of computation [12]. StreamIt provides three
interconnection modes: the Pipeline allows the connection
of several tasks in a straight line, the SplitJoin allows for
nesting data parallelism by dividing the output of a task in
multiple streams, then merging the results in a single output
stream, and the FeedbackLoop allows the creation of streams
from consumers back to producers. The channels connect-
ing tasks are implemented either as circular buffers, or as
message passing for small amounts of control information.
Thanks to these static restrictions (periodicity, structure), a
single StreamIt source can be compiled very efficiently on
a variety of shared and distributed memory targets [9]. But
we believe these expressiveness restrictions are not necessary
to achieve excellent performance, assuming the programmer
is willing to spend a minimal effort to balance the computa-
tions and tune the number of threads to dedicate to each task
manually. This is the pragmatic approach OpenMP has suc-
cessfully taken for years. In addition, when the compiler dis-
covers that the SDF invariants are satisfied, it may trigger ag-
gressive loop transformations to adapt the task parallelism to
the target, matching the performance portability of StreamIt.

The Brook language [4] provides language extensions to
C with Single Program Multiple Data (SPMD) operations
on streams. Unlike StreamIt, it is control-centric, with con-
trol flow operations taking place at synchronization points.
Streams are defined as collections of data that can be pro-
cessed in parallel. For example: “float s<100>;” is a

stream of 100 independent floats. User defined functions that
operate on streams are called kernels. The user defines input
and output streams for the kernels that can execute in paral-
lel by reading and writing to separate locations in the stream.
Brook kernels are blocking and isolated: the execution of a
kernel must complete before the next kernel can execute. This
is the same execution model that is available on graphics pro-
cessing units (GPUs): a task queue contains the sequence of
shader programs to be applied on the texture buffers.

Dynamic data-flow principles [21, 7, 1] have regained pop-
ularity as pragma-based extensions to imperative languages.
Based on CellSs [2], StarSs [16] defines a complete set of
pragmas to program distributed-memory and heterogeneous
architectures; it supports both data-flow and control-flow pro-
gramming styles. SMPSs is one of the StarSs incarnations
for shared-memory targets [13]. TFlux follows a similar ap-
proach [18], focusing on data flow and targeting the Data-
Driven Multithreading (DDM) execution model [11]. StarSs
and TFlux are closely related to streaming languages, but they
differ from our approach in two fundamental aspects:

• their design and implementation assume a short-lived task
execution model, relying on data-driven scheduling of
lightweight user-level threads and work stealing; this is
excellent for load-balancing, but induces significant over-
heads for finer grain tasks, as our experiments confirm;

• they are not compatible with OpenMP, but introduce
other pragmas with different semantics; StarSs handles
distributed memory and heterogeneous targets, unlike
OpenMP, but is not as expressive on shared-memory tar-
gets; TFlux is currently restricted to nested loops.

Closest to our work is the Streaming Programming Model
of the ACOTES project [5]. This model takes its inspira-
tion from the OpenMP3.0 tasks, but is not compatible with
OpenMP. It adds decoupled communication channels and pi-
oneered the persistent interpretation of tasks, among other
contributions. Our proposal derives from this experimental
platform, but it is more expressive, it achieves a complete and
incremental integration within OpenMP, and it enables more
efficient compilation methods.

3 Design goals of the extension
Our primary design goal is to enable OpenMP program-
mers to exploit pipeline parallelism without explicitly hav-
ing to handle communication and synchronization, which is
both error-prone and time-consuming. We also want to offer
highly efficient decoupled pipelined executions to program-
mers with no experience in shared-memory concurrency. To
achieve these goals, we propose extensions to the OpenMP
language, exposing the necessary information for the genera-
tion of pipelined parallel code, while ensuring this additional
expressiveness does not introduce excessive complexity and
does not break the semantics of the current specification.

More specifically, we deem the three objectives of expres-
siveness, efficiency and simplicity to be the most important

2



to enable stream programming in OpenMP. In Section 4, we
will show how to achieve these goals.

Expressiveness. The extension aims to provide a way
for programmers to expose producer-consumer relationships.
The current OpenMP specification lacks the capability to ex-
plicit the flow of data, as the existing sharing clauses only al-
low to distinguish between shared and private data. In
order to use task constructs in non-embarrassingly parallel
problems, manual synchronization is required to communi-
cate through shared memory.

The convenience of “peek” operations and non-unitary pro-
duction and consumption rates is often provided in stream-
ing frameworks. The manual implementation is cumbersome
enough to deserve a simplified mechanism at the language
level, which in addition allows the compiler to generate in-
place operations in stream buffers, avoiding the overhead of
copying from streams to local buffers and back.

Productivity. One of the drawbacks of new stream-
programming languages is that they come with a whole new
programming environment, which lacks debugging support,
interoperability and mature accompanying libraries. To this
startup cost, one should often add the cost of target-specific
tweaking required by the lower level languages (e.g., hard-
wired offloading directives for accelerators). By extend-
ing a well-known parallel-programming language, OpenMP,
with incremental, natural and target-independent constructs
for streaming, the programmer’s productivity is maximized.
We believe a seamless integration with the current OpenMP
specification is essential to avoid making the extension an
additional burden on current developers. They should not
change the way they are used to work with OpenMP for
non-streaming applications. The semantics of the exten-
sion should therefore be incremental and any new interaction
should, as far as possible, follow the existing rules. This prac-
tical constraint turns into a research challenge: building com-
positional data-flow constructs over an existing imperative,
shared-memory semantics.

Efficiency. The execution model of OpenMP3.0 specifica-
tion tasks is similar to that of coroutines or fibers. A task
instance is created whenever the execution flow of a thread
encounters a task construct, but the execution of the newly
created task is contingent on the cooperative scheduling pol-
icy. No ordering of the execution of tasks can be assumed.
Such an execution model is well suited for unbalanced loads,
but the overhead of creating and scheduling tasks is signif-
icantly more expensive than synchronizing persistent tasks.1

Indeed, when the load can be properly balanced, there is a
strong case for relying on persistent tasks rather than on data-
driven scheduling of short-lived tasks.

To sustain this claim, we compare the cost of our op-
timized synchronization algorithm to the cost of schedul-
ing lightweight tasks on a synthetic benchmark, called

1Except when the target architecture offers some support for very
lightweight thread scheduling [11].

exploration, consiting of a sequential producer task gen-
erating values and a consumer. In the persistent task ver-
sion, the producer pushes the values in a stream, by groups
of burst values at a time, and the consumer is a single task
reading from that stream and synchronizing with the producer
for every block of burst values. In the Cilk version the pro-
ducer spawns a new task to process each block of burst val-
ues. The burst parameter allows to study the parallelization
overhead as a function of the synchronization grain. The re-
sults, on an Intel Core2 Quad Q9550 with 4 cores at 2.83GHz,
are presented on Figure 1. While the benefits of schedul-
ing lightweight tasks for load-balancing are undeniable, the
higher overhead of scheduling requires a significantly higher
task granularity to amortize. In order to evaluate the gran-
ularity required to break even between persistent and short-
lived tasks, we compare, on Figure 1, the execution time on
the exploration synthetic benchmark. On one side we
use persistent tasks, while on the other we have a Cilk im-
plementation spawning short-lived user-level tasks [8]. Cilk
is run with the --nproc 4 option to generate parallel code,
and with the --nproc 1 option to specialize the code for
sequential execution. The sequential Cilk version takes al-
most 7 s for the finest synchronization grain, and 5 s for larger
ones. The parallel Cilk version with the finest synchroniza-
tion takes 221.4 s and the corresponding persistent task ver-
sion takes 107.7 s. The performance gap widens significantly
for bursts of intermediate size, and approaches 5× when the
persistent task version reaches its performance plateau. The
most important figure, in practice, is that the persistent tasks
break even for grain size 80× smaller than Cilk. This demon-
strates the need for data-flow interactions among long-lived,
persistent tasks as an essential abstraction for scalable con-
currency.

1 2 4 8 16 32 64 128 256 1024 2048 4096 8192 16384 32768 65536
1

10

100

1000

Persistent tasks Cilk (--nproc 4) Cilk (--nproc 1)

Burst size

E
xe

cu
tio

n 
tim

e

Figure 1: Exploration: persistent vs. short-lived user-level tasks.

4 Proposed OpenMP streaming extension
This section introduces the syntactic constructs we need to
meet the design goals outlined in Section 3. We use a C syn-

3



tax although everything can easily be transposed to Fortran.

input/output (list)
    list   ::= list, item
             | item
    item   ::= stream
             | stream >> window
             | stream << window
    stream ::= var
             | array[expr]
    expr   ::= var
             | value

input (s >> Rwin[burstR])

s

Rwin

Wwin

peek

poke

burst

burst

int s, Rwin[Rhorizon];
int Wwin[Whorizon];

output (s << Wwin[burstW])

Figure 2: Syntax for input and output clauses.

Language extension. We propose to extend OpenMP3.0
with two additional clauses for task constructs, the input
and output clauses presented on Figure 2. Both clauses
take a list of items, each of which describes a stream and its
behaviour w.r.t. the task to which the clause applies. In the
abbreviated item form, stream, the stream can only be ac-
cessed one element at a time through the same variable s.
In the second form, stream >> window, the programmer
uses the C++ flavoured << >> stream operators to connect a
sliding window to a stream, gaining access, within the body
of the task, to horizon elements in the stream.

Our programming model is more general than scalar data-
flow: tasks compute streams of values and not individual
values. To the programmer, streams are plain C variables,
transparently expanded into streams by the compiler. An ar-
ray declaration (in C) defines the sliding window accessible
within the task and its size, the horizon. Connecting a slid-
ing window to a stream in an input or output clause al-
lows to indicate the burst, which is the number of elements by
which the sliding window is shifted after each activation. In
Figure 2 the input window Rwin is shifted by two elements,
while the output window Wwin is shifted by three elements.
Scalar data-flow corresponds to horizon = burstR (resp.
burstW). In the more general case where horizon >
burstR (resp. burstW), the window elements beyond the
burst are accessible to the task; for an output window, the
values of these elements will only be committed and made
accessible to consumers in subsequent activations. Task acti-
vation is driven by the availability, on each input stream, of
all horizon elements on the input window.

The examples on Figure 3 illustrate the syntax of the
input and output clauses. In the first example on the left,
the task reads from the stream x. It reads up to horizon
values of x ahead of the current position in the stream, and
consumes burst elements at each activation. In the second
example on the left, the task reads from the stream A[0], the
first element of the array of streams A, and connects it to the
“window” z for use within the task. In this degenerate form,
the window is a scalar: the task can only access and consume
one element at a time. In the third example on the left, the
task reads from the stream of arrays A of 3 elements; depend-
ing on the task, the same array may interchangeably be used
as an array of streams or a stream of arrays. Finally, the last
example on the right shows a stream of arrays with parametric

horizon and burst values; all combinations are possible.2

int x, z;
int X[horizon];
int A[3];

#pragma omp task \
input (x >> X[burst])

// task code block
// horizon > 2
... = ... X[2];

#pragma omp task \
input (A[0] >> z)

// task code block
... = ... z ...;

#pragma omp task input (A)
// task code block
... = A[0] + A[1] + A[2];

int y;
int Y[horizon];
int B[horizon][2];

#pragma omp task output (y)
// task code block
y = ...

#pragma omp task \
output (y << B[burst][])

// task code block
for (int i=0; i<burst; ++i)
{
B[i][0] = ...;
B[i][1] = ...;

}

Figure 3: Example of input and output clauses.

Notice that the array used to access the stream does not
need to be allocated. Its syntactic presence is motivated by
compatibility reasons and to ensure the code can compile and
execute even if the OpenMP annotations are omitted.

Following the semantics of OpenMP3.0, the enclosing con-
text is considered to be an implicit task acting as a source
and/or a sink for any streams that do not have other connec-
tion options. If a task has a unmatched input clause, the
stream of data comes from the enclosing context and con-
versely, if a task has a unmatched output clause, the stream
of data goes to the enclosing context.

Execution model. The OpenMP3.0 execution model states
that, whenever a thread encounters a task construct, a task
instance is generated from the code of the associated struc-
tured block. This task may either be scheduled immediately
on the same thread or deferred and assigned to any thread in
the team. The data environment of the task is created accord-
ing to the data-sharing attribute clauses on the task construct
and any defaults that apply.

Such a model is well suited for very unbalanced loads,
but in most cases the overhead of creating and scheduling
the tasks is significantly higher than synchronizing persistent
tasks. While a modification of the execution model is not
necessary for the correctness of our extension, this model is
poorly suited from an efficiency perspective in the case of
streaming tasks, which are naturally rather regular.

We propose to make streaming tasks persistent in our
OpenMP extension. We emphasize the fact that this change
only affects the execution model: the semantics of OpenMP
programs is not impacted. This choice puts a heavier load
on the compiler: it needs to convert the dynamic scheduling
of new instances of a task into data-driven synchronization
(i.e., based on the availability of data in the input streams).
In this new model, all streaming tasks are created at the be-
ginning of the enclosing OpenMP context and they can only
execute when sufficient data is present on all input channels.
In the particular case where a task has no input channels, but

2The size of the second dimension of B can be implicit in the clause.

4



has output channels (thus qualifying it for streaming), an im-
plicit input stream is created to carry the control-flow, thus
converted to data-flow.

5 Semantics of the streaming extension
In this section, we elaborate on the semantical interpretation
of our proposed extension. The OpenMP specification pro-
vides many illustrative examples that help understanding of
the semantics and we will also adopt this stance. For instance,
because of its execution model, the task construct is mostly
used within the scope of a worksharing construct3. As every
thread encountering a task construct will create a dynamic
instance of the task, it is necessary to be able to discriminate
the different instances, in a context where tasks can be sched-
uled anytime, anywhere (barring tied tasks and “if” clauses).
For this reason the task construct will actually be meaning-
ful only in cases where threads are already differentiated, like
e.g., within a worksharing construct.
#pragma omp parallel \

num_threads (2) {

for (i = 0; i < N; ++i) {
#pragma omp task

work (i);
}

}

#pragma omp parallel \
num_threads (2) {

#pragma omp for
for (i = 0; i < N; ++i) {

#pragma omp task
work (i);

}
}

Figure 4: Task instances need to be differentiable. Multiple undif-
ferentiated instances (left) and properly differentiated (right).

Figure 4 illustrates this issue. On the left, the task con-
struct is used directly within the parallel directive. There
will be duplicate instances of the task, one for each of the two
threads executing this parallel section, and the two instances
will be impossible to differentiate. By contrast, on the right,
the worksharing construct (the omp for) distributes loop it-
erations onto the available threads and ensures a single in-
stance of the task will be activated for each value of i.

The same semantics will apply to streaming tasks. While
we do not forbid the use of streaming tasks outside a work-
sharing construct, there is hardly any reason why such a be-
haviour would be used, except if the code preceding the task
construct manually differentiates the threads, which is seldom
portable and often considered bad coding practice.

Another important point is that, by nature, pipelining re-
quires tasks to be part of a loop structure as filters are applied
to a sequence of elements. It is possible to use streaming tasks
outside of a loop nest, which then behaves as a loop with a sin-
gle iteration. This is of little interest overall as it only incurs
the overhead of creating streams for single elements.

In the remainder of this paper, we will only discuss the
cases where streaming tasks are enclosed by a loop, which
itself must be nested within a worksharing construct. How-
ever, as these constructs can be part of a caller function, the
callee can possibly only exhibit freestanding tasks, which will
sometimes be the case in our examples for brevity.

3OpenMP3.0 defines the following worksharing constructs: loop,
sections, single and workshare.

5.1 Programming model

Though this is by no means an exhaustive list of the possi-
ble uses of streaming tasks or of their interaction with other
OpenMP constructs, we will present in the following para-
graphs how our extensions can provide the necessary building
blocks for programming streaming applications.

Pipeline parallelism. To provide the fundamental basis for
pipelining, we use the single worksharing construct for
building a simple pipeline, as for example on Figure 5.

#pragma omp parallel
#pragma omp single
for (i = 0; i < N; ++i) {

#pragma omp task output (x)
x = ... ;

#pragma omp task input (x)
... = ... x ...;

}

x=...

...=x

1

1

x

Figure 5: Simple pipeline using the singleworksharing construct.

Parallel and sequential filters. Filters are naturally par-
allel, as the ordering of the elements in the stream is pre-
served by the stream library implementation, except in the
case where a stream is both input and output to the same fil-
ter as in Figure 6. This denotes a loop-carried dependence, or
equivalently that the filter has a state that is preserved between
executions.
#pragma omp parallel
#pragma omp single {

int counter = 0;
for (i = 0; i < N; ++i) {

#pragma omp task input (counter)\
output (x, counter)

{
counter++;
x = ... ;

}
#pragma omp task input (x)

... = ... x ...;
}

x = ...
1

1
x

counter++
1

1
counter

... = ...x...

Figure 6: Pipeline with one sequential filter because of a self-loop.

In this case, the first filter must execute sequentially while
the second could be data-parallelized. This case often arises
when a filter reads or writes to a file as the file descriptor is
both read and written at every access to the file. If a task
does not properly specify inputs and outputs, the resulting
behaviour is unspecified.

Multiple connections. It is possible to connect multiple fil-
ters to the same stream, both as input and as output. The
semantics of multiple filters using the same stream as input is
to broadcast the data: all the consumers have access to the all
data. If multiple filters use the same stream as output, then the
values produced by these filters are interleaved in the stream,
according to the sequential schedule.

Delays. Among stateful filters, delays play a central role. A
unit delay prepends an initial value to the stream it takes as in-
put, effectively delaying input values by one activation of the

5



task. Delays are used to break instantaneous dependence cy-
cles in the SDF model of computation [12]; they take the form
of the “pre” operator (akin to a synchronous register) in syn-
chronous data-flow languages [10]. Their role is paramount
in the modeling of hardware circuits and control-dominated
embedded systems. Strangely, delays have not met the same
success for parallel stream programming (yet), as illustrated
by their absence from the StreamIt benchmark suite [19].

Delays can be implemented through tasks producing the
desired amount of data before the producer filters start execut-
ing. This is illustrated on Figure 7, where k initial elements
are inserted in the stream x by the first task. Thanks to the
multiple output semantics defined in the previous paragraph,
this first task implements a k-delay operator. If k ≥ 1, this is
sufficient to break the instantaneous dependence cycle among
the two following tasks. No internal state is required to im-
plement delays, the state is hidden in the stream, by storing
the delay values, and outside in the control flow. This guar-
antees that delays do not waste data-parallelism by inducing
spurious serialization due to internal state.

#pragma omp task output (x << A[k])
for (i = 0; i < k; ++i)
A[i] = ...;

for (i = 0; i < N; ++i) {
#pragma omp task input (y) output (x)

x = ... y ...;
#pragma omp task input (x) output (y)

y = ... x ... ;
}

Figure 7: Introducing delays on streams.

Mixing data and pipeline parallelism. While the runtime
may exploit data parallelism within a pipeline by executing
multiple instances of parallel filters (starting with the heaviest
ones for load balancing), the programmer can decide to ex-
plicit data-parallelism at the pipeline or individual filter level.

#pragma omp parallel
#pragma omp for shared (A)

for (i = 0; i < N; ++i) {
#pragma omp task output (x)

x = ... ;

#pragma omp task input (x) shared (A)
A[i] = ... x ...;

}

1

1
x

x = ...

A[i]=...x

1

1
x

x = ...

A[i]=...x

A

Figure 8: Parallel replicated pipelines with a worksharing construct.

For example the code on Figure 8 creates parallel pipelines
of filters by using the loop worksharing construct instead
of single. We must note that the correctness of this par-
allelization depends on the behaviour of the tasks. The user
is responsible for ensuring no dependence is violated and for
using proper synchronization if required. The programmer
could even introduce a second level of data parallelism within
a filter, by nesting a parallel loop within a streaming task as
illustrated on Figure 9. But if the compiler does not take spe-
cial provisions for the specialization of nested parallelism, it

may result in unnecessary overheads.

Dynamic pipelines. In some cases, like the butterfly stages
of an FFT, it is necessary to build a pipeline where the depth
is parametric. We can build dynamic pipelines by using clas-
sical OpenMP3.0 tasks in addition to the worksharing con-
struct, and using an array of streams to communicate through
the pipeline, which we illustrate on Figure 10.

int X[k];
#pragma omp parallel
#pragma omp single

for (i = 0; i < N; i+=k) {
#pragma omp task output (x << X[k])

{
#pragma omp parallel for

for (j = 0; j < k; ++j)
X[j] = ... ;

}
#pragma omp task input (x)

... = ... x ...;
}

X[j]=... X[j]=...

X

... = x

X
k

1

Figure 9: Parallel loop worksharing construct within a filter.

int A[K];
#pragma omp parallel
#pragma omp single

for (i = 0; i < N; ++i) {
#pragma omp task output (A[0] << x)

x = ... ;
}
for (j = 0; j < K-1; ++j)

#pragma omp task
for (i = 0; i < N; ++i) {

#pragma omp task input (A[j] >> x) \
output (A[j+1] << y)

y = ... x ...;
}

x=...

y=...x...

y=...x...

A[0]
1

1

1

1

A[1]

A[K-1]

Figure 10: Dynamic pipeline of filters generated from a loop by
using the task construct.

Hierarchical streaming. Figure 11 shows how pipelines
can be organized hierarchically using nested streaming tasks.
The enclosing task can be seen as a wrapper to factor the des-
ignation of inputs and outputs.

int sub_pipeline (int y) {
int a, res;

#pragma omp task input (y) \
output (a)

a = ... y ...;
#pragma omp task input (a) \

output (res)
res = ... a ...;

return res;
}

#pragma omp parallel
#pragma omp single

for (i = 0; i < N; ++i) {

#pragma omp task output (x)
x = sub_pipeline (...) ;

#pragma omp task input (x)
... = ... x ...;

}

a = ... y ... res = ...a...
11

a

1 1

y res
... = ...x...

1

x

Figure 11: Hierarchically structured pipeline. The first streaming
task on the right serves as a wrapper for the pipeline on the left.

Variable burst sizes. In C99, it is possible to declare ar-
rays whose size is only known when entering a block, which
means that our syntax can lead to variable-sized bursts and

6



horizons in streams. Variable horizons make it very problem-
atic to determine the global buffer size for a stream variable,
so the programmer should instead provide the maximal hori-
zon across all iterations to make this computation possible.
We thus disallow the usage of dynamically-sized arrays as
horizons for input and output clauses. This does not re-
sult in a loss of generality: bursts can be dynamic, with each
instance of a task consuming/producing a different number of
elements, as illustrated on Figure 12.

int X[N];
#pragma omp parallel
#pragma omp single

for (i = 0; i < N; ++i) {
#pragma omp task output (x)

x = ... ;
#pragma omp task input (x >> X[i])

... = ...X[0]...X[1]...X[i];
}

x = ...

... = ...X[0]...X[i]...

x
1

i

Figure 12: Restricting the horizon size to be a constant does not
forbid a task to consume a variable number of elements.

Deadlocks and dependence cycles. The previous con-
structs can induce dependence cycles among tasks, through
the input and output clauses. Delays can be used to break
such cycles. Unfortunately, high expressiveness has a cost:
with arbitrary control flow enclosing task activations and vari-
able burst rates, detection of instantaneous (i.e., delay-free)
dependence cycles is undecidable. We have to accept dead-
locks as part of the semantics of the language extension.

At least, we know that if deadlocks occur, they will occur
deterministically, independently of the number of threads or
scheduling policy. This means that traditional test and debug-
ging procedures for sequential programs are still applicable.

Although no complete method to avoid deadlocks can ex-
ist, conservative approaches have been very successful for
embedded system design; they are based on control-flow and
burst rate restrictions [12] (also adopted by StreamIt), or they
rely on type systems of synchronous clocks [10]. Integrat-
ing some of these principles in the compiler could provide
debugging help and support more aggressive optimizations;
these research directions are left for future work.

firstprivate vs. input. These two clauses are se-
mantically very close. They both represent a privatizing copy-
in of a value. The main difference is that the input clause
will in priority try to connect to an output clause while
the firstprivate clause will copy the variable directly
from the enclosing context. We promote firstprivate
clauses to input clauses in streaming tasks as our choice of
a persistent-task execution model means the expansion of the
clause needs a stream to forward copy-in values to the thread
in charge of executing the successive instances of the task.

5.2 Execution model

Following are a few important considerations on the execu-
tion model underlying these language constructs.

Persistent tasks. To improve performance, we propose to
adjust the execution model to make streaming tasks persis-
tent. Instead of having one instance of the task for each
point in the iteration space of the enclosing OpenMP con-
text (worksharing construct or any other OpenMP construct),
we will have a single instance that will traverse the full itera-
tion space, consuming data on the input streams and produc-
ing on the output streams. We emphasize the fact that this
modification of the execution model is not a requirement of
the extension we propose. Given the right circumstances, in
particular w.r.t. the target architecture support for lightweight
scheduling [11], the compiler may still generate code that fits
the current execution model for tasks.

To prove the validity of this transformation, let us con-
sider the acceptable schedules of the task instances. In the
old schedule, no ordering, no exclusion and no thread local-
ity could be assumed. All schedules were therefore accept-
able (without explicit locking). In the new execution model,
the persistent task traverses the iteration space in a statically-
defined partial order, thus restricting the possible schedules
to a subset of the acceptable schedules. The particular case
where a parallel filter is replicated to benefit from data par-
allelism means that the iteration space has been strip-mined
and that the different instances will impose a local order for
the execution. The resulting set of possible schedules is still a
subset of the acceptable schedules in the old execution model.

Correctness is of course the burning question at this point.
Overall, the transformation is always possible and correct
when the only scheduling constraints are the data-driven ones
enforced by input and output clauses. Obviously, intro-
ducing atomic sections within tasks will not interfere with
task-level scheduling constraints. However causality prob-
lems may arise when combining our streaming extensions
with arbitrary locking mechanisms, if the acquisition of a lock
escapes outside task boundaries. In real applications, lock-
ing may be legitimate to handle other forms of concurrency
unrelated with the parallelization itself (e.g., I/O or user in-
terfaces). Conversion to persistent tasks forces the ordering
of successive task instances. Whereas valid schedules may
exist for independent, freely schedulable tasks, it is possible
that none of them be compatible with the sequential execution
of dynamic instances of a given task. Without further precau-
tions, conversion to persistent tasks may thus result into dead-
locks (of the evil, target-dependent kind). Because of the crit-
ical performance advantage of the persistent-task execution
model, and because of the importance of compiler optimiza-
tions to tune the grain of task and pipeline parallelism [9], we
choose to (minimally) constrain the usage of cross-task lock-
ing mechanisms. Since OpenMP encourages programmers to
make the sequential execution a subset of the legal schedules
of the parallel program [20], one may require cross-task lock-
ing to be compatible with the serial execution of tasks. When
generating persistent tasks, the compiler can safely assume
that the original schedule of task instances is deadlock-free.
Regarding debugging and test, one only has to compile the

7



program for serial execution to make sure it is deadlock-free.

Nesting. For all nesting purposes, we consider that the nest-
ing of a streaming task within any OpenMP construct behaves
in the same way standard task constructs behave. The itera-
tion space taken into account for a streaming task is relative to
the nearest enclosing OpenMP construct. However, the visi-
bility of input and output clauses and therefore the vis-
ibility of the resulting task graph spans across all constructs
within the nearest enclosing parallel region.

Data parallelism. Data parallelism is typically exploited
automatically at runtime as all tasks that do not partake in a
dependence cycle (induced by input and output clauses)
are fully data-parallel. The programmer is free to mix pipelin-
ing with other data-parallel OpenMP constructs: the compiler
will generate broadcast, splitter and selector patterns to han-
dle synchronization and stream buffer indexing.

Streaming tasks are data-parallel by nature. This comes
from the fact that they only read from and write to private
memory (including their stream horizon). Unless the task
uses shared memory with explicit synchronization or it is part
of an inter-task dependence cycle, it will be deemed parallel.

5.3 Example: FFT

In order to illustrate the programming model this extension
enables, let us show how this all works together on the im-
plementation of FFT presented on Figure 13. This example
was chosen as it illustrates most of the constructs we have in-
troduced so far. The global structure is a linear pipeline of
filters using two dynamic pipelines with an array of streams,
STR[]. The horizons and rates are constant, but they vary
across the different filters in the dynamic pipelines. This ac-
counts for varying degrees of available data parallelism within
the filters, which is a well-known issue for FFT.

Reorder stages DFT stages

Figure 14: Data-flow graph for FFT.

For this FFT implementation, data-parallelism is available
in each stage or vertical slice of the data-flow graph presented
on Figure 14. Pipelining allows to relax the synchroniza-
tion and enables wavefront parallelization. We control the
granularity by varying the depth of the pipeline, thus chang-
ing the number of times the data is split. The maximal de-
gree of parallelism available varies through the execution, and
the optimal achievable speedup (on a PRAM) is in between
log2(size)/2 and (log2(size) + 1)/2.

6 Implementation and experiments
The implementation of this extension is under way in a public
branch of GCC. This early implementation already provides
full support for generating (coarse-grain) pipelined code from
our OpenMP extension. The current stable state has reached
the point where programs requiring simple pipelines can
be compiled with support for constant burst and horizon
sizes. The automatic exploitation of mixed pipeline- and
data-parallelism as well as variable burst rates and dynamic
pipelines are still under development. The streaming library
takes advantage of the memory hierarchy by aggregating
communication in reading/writing windows. The windows’
size is a multiple of the size of a L1 cache line, which reduces
false sharing and improves performance [17].
#pragma omp parallel
#pragma omp single
{
while (16 == fread (readbuf, 4, 16, in_file)) {

#pragma omp task input (readbuf) output (qd_buf)
fm_quad_demod (&qd_conf, readbuf, &qd_buf);

#pragma omp task input (qd_buf) output (band11)
ntaps_filter_ffd (&lp11_conf, 1, qd_buf, band11);

#pragma omp task input (qd_buf) output (band12)
ntaps_filter_ffd (&lp12_conf, 1, qd_buf, band12);

#pragma omp task input (qd_buf) output (band21)
ntaps_filter_ffd (&lp21_conf, 1, qd_buf, band21);

#pragma omp task input (qd_buf) output (band22)
ntaps_filter_ffd (&lp22_conf, 1, qd_buf, band22);

#pragma omp task input (band11, band12) output (res_1)
subctract (band11, band12, res_1);

#pragma omp task input (band21, band22) output (res_2)
subctract (band21, band22, res_2);

#pragma omp task input (res_1, res_2) output (ffd_buf)
multiply_square (res_1, res_2, ffd_buf);

#pragma omp task input (qd_buf1) output (band2)
ntaps_filter_ffd (&lp2_conf, 8, qd_buf, band2);

#pragma omp task input (ffd_buf) output (band3)
ntaps_filter_ffd (&lp3_conf, 8, ffd_buf, band3);

#pragma omp task input (band2, band3) output (out1, out2)
stereo_sum (band2, band3, &out1, &out2);

#pragma omp task input (out1, out2) private (output_short)
{
output_short[0] = trunc_and_norm (out1);
output_short[1] = trunc_and_norm (out2);
fwrite (output_short, sizeof(short), 2, out_file);

}
}}

Figure 15: Annotated kernel from the GNU radio project.

We present results on three full applications: FFT from
the StreamIt benchmarks [19], FMradio from the GNU ra-
dio package4 and a 802.11a production code from Nokia.5

These applications are complex enough to illustrate the ex-
pressiveness of our extension. The annotated kernels of FFT
and of FMradio are presented on Figures 13 and 15. The
main loop of 802.11a could not fit in this paper.

At this time, the fully automated stream code genera-
tion from extended OpenMP annotations is only possible for
FMradio and 802.11a and it can only exploit pipeline par-
allelism. It achieves a speedup of 3.1× on FMradio and a

4http://gnuradio.org/trac
5From the ACOTES FP6 European project.

8



x=... print(...)

Dynamic reorder pipeline Dynamic DFT pipeline

1 2N 2N 2N 2N 1N 16 8 48 4 8 N
pipeline[0] pipeline[1]

#pragma omp parallel
#pragma omp single
{
float x, STR[2*(int)(log(N))];

// Generate some input data (or read from a file)
for(i = 0; i < 2 * N; ++i)

#pragma omp task output (STR[0] << x)
x = (i % 8) ? 0.0 : 1.0;

// Reorder
for(j = 0; j < log(N)-1; ++j) {
int chunks = 1 << j;
int size = 1 << (log(N) -j + 1);

#pragma omp task
{
float X[size];
float Y[size];
for (i = 0; i < chunks; ++i) {

#pragma omp task input (STR[j] >> X[size])\
output (STR[j+1] << Y[size])

for (k = 0; k < size; k+=4) {
Y[k/2] = X[k];
Y[k/2+1] = X[k+1];
Y[(k+size)/2+1] = X[k+2];
Y[(k+size)/2+2] = X[k+3];

}
}}}

// DFT
for(j = 1; j <= log(N); ++j) {
int chunks = 1 << (log(N) - j);
int size = 1 << (j + 1);

#pragma omp task
{
float X[size], Y[size];
float *w = compute_coefficients (size/2);

for (i = 0; i < chunks; ++i) {
#pragma omp task input (STR[j+log(N)-2] >> X[size]) \

output (STR[j+log(N)-1] << Y[size]) shared (w)
for (k = 0; k < size/2; k += 2) {
float t_r = X[size/2+k]*w[k] - X[size/2+k+1]*w[k+1];
float t_i = X[size/2+k]*w[k+1] + X[size/2+k+1]*w[k];
Y[k] = X[k] + t_r;
Y[k + 1] = X[k+1] + t_i;
Y[size/2+k] = X[k] - t_r;
Y[size/2+k+1] = X[k+1] - t_i;

}
}}}

// Output the results
for(i = 0; i < 2 * N; ++i)

#pragma omp task input (STR[2*log(N)-1] >> x, stdout) \
output (stdout)

printf ("%f\t", x);
}

Figure 13: FFT implementation using dynamic task pipelines and the corresponding task graph.

speedup of 2.9× on 802.11a on an Intel Core2 Quad Q9550
with 4 cores at 2.83GHz. Similar results are achieved on the
other platforms for the pure (coarse-grain) pipelined version.

To get an idea of what could be achieved once the im-
plementation is complete, we manually parallelized the three
applications using the low-level stream programming exten-
sions supporting the expansion of OpenMP pragmas. We con-
ducted performance evaluations on a 4-socket AMD quad-
core Opteron 8380 (Shanghai) with 16 cores at 2.5GHz and a
4-socket Intel hexa-core Xeon E7450 (Dunnington), with 24
cores at 2.4GHz, both with 64GB of memory. These targets
are respectively called Opteron and Xeon in the following.
FMradio presents a high amount of data-parallelism and

is fairly well-balanced; annotating the code with the extended
OpenMP directives requires little effort and provides up to
12.6× speedup on Opteron and up to 18.8× speedup on
Xeon. 802.11a is more unbalanced and complicated to par-
allelize. A lot of code refactoring is necessary to expose data
parallelism as the original version extensively uses global and
static variables. After this step, annotating the program is
straightforward and the parallelized code achieves up to 13×
speedup on Opteron and 14.9× speedup on Xeon.

Speedups for FFT are presented on Figures 16 and 17. The
baseline is an optimized sequential FFT implementation used
as a baseline within the StreamIt benchmark suite. Combined

pipeline- and data-parallelism achieve the best results, com-
pared to pure data-parallelism or pure pipelining. We report
two sets of results for each target: the single configuration re-
sults (on the left) correspond to speedups obtained when using
the same tuning parameters (number of threads, granularity,
etc.) for all the data sizes and for all the code versions; the
best configuration results correspond to the optimal perfor-
mance achieved with the best configuration for each individ-
ual data size point. The size of the machines and the associ-
ated cost of inter-processor communication set the break-even
point around vectors of 256 doubles and more.

These results validate our approach and constitute a strong
incentive to complete the development of this streaming
framework in GCC. We are also proposing to include this ex-
tension in upcoming revisions of the OpenMP specification.

7 Conclusion
We presented an incremental extension to enable stream pro-
gramming in OpenMP. Our work is motivated by the quest
for increased productivity in parallel programming, and by
the strong evidence that has been gathered on the importance
of pipeline parallelism for scalability and efficiency. We dis-
cussed the design principles necessary to maximize the ex-
pressiveness and performance benefits of our extension, while
preserving backward compatibility. One key choice was to

9



Mixed pipeline
and data-parallelism

Pipeline parallelism Cilk

Data-parallelism
OpenMP3.0 loops

OpenMP3.0 tasks

7

6

5

4

3

2

1

0

S
pe

ed
up

 v
s.

 s
eq

ue
nt

ia
l

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Log2 (FFT size)

L1
core

L2
core

L2
chip

L3
chip

L3
machine

7

6

5

4

3

2

1

0

S
pe

ed
up

 v
s.

 s
eq

ue
nt

ia
l

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Log2 (FFT size)

L1
core

L3
machine

L2
chip

L2
core

L3
chip

Mixed pipeline
and data-parallelism

Pipeline parallelism CilkData-parallelism
OpenMP3.0 loops

OpenMP3.0 tasks

Single configuration for all FFT sizes Best configuration for each FFT size

Figure 16: FFT performance on Opteron.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Log2 (FFT size)

L1
core

L2
2 cores

L2
chip

L3
chip

6

5

4

3

2

1

0

S
pe

ed
up

 v
s.

 s
eq

ue
nt

ia
l6

5

4

3

2

1

0

S
pe

ed
up

 v
s.

 s
eq

ue
nt

ia
l

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Log2 (FFT size)

L1
core

L2
2 cores

L2
chip

L3
chip

Mixed pipeline
and data-parallelism

Pipeline parallelism CilkData-parallelism
OpenMP3.0 loops

OpenMP3.0 tasks

Single configuration for all FFT sizes Best configuration for each FFT size

Figure 17: FFT performance on Xeon.

favor an execution model where the tasks are persistent: this
choice allows static scheduling and lightweight, lock-free im-
plementations for streaming communications. We demon-
strated the expressiveness and performance advantages of our
design on real-world applications.

The only down-side of persistent tasks is the lack of native
support for load balancing. In the future, we plan to com-
plement our implementation with lightweight threading and
work-stealing mechanisms to address this limitation. We be-
lieve that data-driven scheduling at coarse grain can be com-
bined with persistent tasks and streaming communications at
finer grain to offer the best of both worlds in terms of load
balancing and synchronization overhead.

References
[1] Arvind, R. S. Nikhil, and K. Pingali. I-structures: Data structures for parallel

computing. ACM Trans. on Programming Languages and Systems, 11(4):598–
632, 1989.

[2] P. Bellens, J. M. Pérez, R. M. Badia, and J. Labarta. CellSs: a programming model
for the Cell BE architecture. In SC, 2006.

[3] R. H. Bisseling. Parallel Scientific Computation: A Structured Approach using
BSP and MPI. Oxford University Press, Mar. 2004.

[4] The Brook Language. http://graphics.stanford.edu/projects/
brookgpu/lang.html.

[5] P. M. Carpenter, D. Ródenas, X. Martorell, A. Ramı́rez, and E. Ayguadé. A
streaming machine description and programming model. In SAMOS, pages 107–
116, 2007.

[6] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Intl. Conf. on
Parallel Processing (ICPP), Saint Charles, IL, 1986.

[7] J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor architecture.
In Supercomputing (SC’88), pages 368–373, 1988.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5
multithreaded language. In ACM Symp. on Programming Language Design and
Implementation (PLDI’98), pages 212–223, Montreal, Quebec, June 1998.

[9] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. In International Conference on
Architectural Support for Programming Languages and Operating Systems, San
Jose, CA, Oct 2006.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, Sept.
1991.

[11] C. Kyriacou, P. Evripidou, and P. Trancoso. Data-driven multithreading using
conventional microprocessors. IEEE Trans. on Parallel Distributed Systems,
17(10):1176–1188, 2006.

[12] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Trans. Computers, 36(1):24–25,
1987.

[13] V. Marjanovic, J. Labarta, E. Ayguadé, and M. Valero. Effective communication
and computation overlap with hybrid MPI/SMPSs. In PPOPP, 2010.

[14] A. Munshi. The opencl specification, v. 1.0, revision 29.
www.khronos.org/registry/cl/specsopencl-1.0.29.pdf, 2008.

[15] V. Pankratius, A. Jannesari, and W. F. Tichy. Parallelizing bzip2: A case study in

10



multicore software engineering. IEEE Softw., 26(6):70–77, 2009.
[16] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical task-based pro-

gramming with starss. Intl. J. on High Performance Computing Architecture,
23(3):284–299, 2009.

[17] A. Pop, S. Pop, H. Jagasia, J. Sjödin, and P. H. J. Kelly. Improving GNU com-
piler collection infrastructure for streamization. In Proceedings of the 2008 GCC
Developers’ Summit, pages 77–86, 2008. http://www.gccsummit.org/
2008.

[18] K. Stavrou, M. Nikolaides, D. Pavlou, S. Arandi, P. Evripidou, and P. Trancoso.
Tflux: A portable platform for data-driven multithreading on commodity mul-
ticore systems. In Intl. Conf. on Parallel Processing (ICPP’08), pages 25–34,
Portland, Oregon, Sept. 2008.

[19] The StreamIt language. http://www.cag.lcs.mit.edu/streamit/.
[20] The OpenMP Architecture Review Board. OpenMP Application Program Inter-

face. http://www.openmp.org/mp-documents/spec30.pdf.
[21] I. Watson and J. R. Gurd. A practical data flow computer. IEEE Computer,

15(2):51–57, 1982.

11


