Polyèdres et compilation

François Irigoin & Mehdi Amini & Corinne Ancourt & Fabien Coelho & Béatrice Creusillet & Ronan Keryell

MINES ParisTech - Centre de Recherche en Informatique

12 May 2011

Our historical goals

 Find large grain data and task parallelism includes medium and fine grain parallelism

Introduction Bernstein's Conditions Scheduling Memory Other Transformations Synthesis Conclusion

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
 - full inlining is ineffective because of complexity
 - cannot cope with recursion

Introduction Bernstein's Conditions Scheduling Memory Other Transformations Synthesis Conclusion

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
 - full inlining is ineffective because of complexity
 - cannot cope with recursion
- Interprocedural transformations selective inlining and outlining and cloning are useful

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
 - full inlining is ineffective because of complexity
 - cannot cope with recursion
- Interprocedural transformations selective inlining and outlining and cloning are useful
- No restrictions on input code...
 Fortran 77, 90, C, C99

Introduction Bernstein's Conditions Scheduling Memory Other Transformations Synthesis Conclusion

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
 - full inlining is ineffective because of complexity
 - cannot cope with recursion
- Interprocedural transformations selective inlining and outlining and cloning are useful
- No restrictions on input code... Fortran 77, 90, C, C99
- Hence decidability issues ⇒ over-approximations

Our historical goals

- Find large grain data and task parallelism includes medium and fine grain parallelism
- Interprocedural analyses: whole program compilation
 - full inlining is ineffective because of complexity
 - cannot cope with recursion
- Interprocedural transformations selective inlining and outlining and cloning are useful
- No restrictions on input code...
 Fortran 77, 90, C, C99
- Hence decidability issues ⇒ over-approximations
- But exact analyses when possible

Introduction Bernstein's Conditions Scheduling Memory Other Transformations Synthesis Conclusion

Polyhedral School of Fontainebleau... vs Polytope Model

- Summarization/abstraction vs exact information
- No restrictions on input code

• Refine Bernstein's conditions

- Refine Bernstein's conditions
- Scheduling: loop parallelization, loop fusion

- Refine Bernstein's conditions
- Scheduling: loop parallelization, loop fusion
- Memory allocation: privatization, statement isolation

- Refine Bernstein's conditions
- Scheduling: loop parallelization, loop fusion
- Memory allocation: privatization, statement isolation
- And many more transformations:
 Control simplification, constant propagation, partial
 evaluation, induction variable substitution, scalarization,
 inlining, outlining, invariant generation, property proof,
 memory footprint, dead code elimination...

- Refine Bernstein's conditions
- Scheduling: loop parallelization, loop fusion
- Memory allocation: privatization, statement isolation
- And many more transformations:
 Control simplification, constant propagation, partial evaluation, induction variable substitution, scalarization, inlining, outlining, invariant generation, property proof, memory footprint, dead code elimination...
- Code synthesis

Simplified notations

- Identifiers i, a, Locations I or (a, ϕ) , Values
- Environment: $\rho : Id \rightarrow Loc$
- Memory state: $\sigma: Loc \rightarrow Val, \ \sigma(i) = 0$
- Preconditions: $P(\sigma) \subset \Sigma$, for(i=0; i<n; i++) $\{\ldots\} \longrightarrow \{\sigma \mid 0 \le \sigma(i) < \sigma(n)\}$
- Transformers: $T(\sigma, \sigma') \subset \Sigma \times \Sigma$, i++; $\longrightarrow \{(\sigma, \sigma') | \sigma'(i) = \sigma(i) + 1\}$
- Array regions: $R: \Sigma \to Loc$, a[i] $\longrightarrow \sigma \to \{(a,\phi) \mid \phi = \sigma(i)\}$
- Statements $S, S_1, S_2 \in \Sigma \rightarrow \Sigma$ function call, sequence, test, loop, CFG...
- Programs Π: a statement

$$W_{S_1}(\sigma) = \{(a, \phi) \mid 0 \le \phi < 5\}$$

for(i=0; i<5; i++)
 $W_{S_2}(\sigma) = \{(a, \phi) \mid \phi = \sigma(i) [\land 0 \le \sigma(i) < 5] \}$
a[i]=0.;

Convex Array Regions of Statement S

Property of a written region W_S

$$\forall \sigma \quad \forall I \notin W_S(\sigma), \quad \sigma(I) = (S(\sigma))(I)$$
 (1)

Note: The property holds for any over-approximation W_S of W_S .

Property of a read region R_S

$$\forall \sigma \quad \forall \sigma'$$
 (2)

$$\forall I \in R_{S}(\sigma), \sigma(I) = \sigma'(I) \Rightarrow \begin{cases} R_{S}(\sigma) = R_{S}(\sigma') \\ W_{S}(\sigma) = W_{S}(\sigma') \\ \forall I \in W_{S}(\sigma), (S(\sigma))(I) = (S(\sigma'))(I) \end{cases}$$

Note: The property holds for any over-approximation $\overline{R_S}$ of R_S in the left-hand side, but not for other over-approximations.

Conditions to exchange two statements S_1 and S_2

Evaluation of S_1 ; S_2 : $\sigma \xrightarrow{S_1} \sigma_1 \xrightarrow{S_2} \sigma_{12}$ Assumptions:

$$\forall \sigma, \quad W_{S_1}(\sigma) \cap R_{S_2}(\sigma_1) = \varnothing \tag{3}$$

$$\forall \sigma, \quad W_{S_1}(\sigma) \cap W_{S_2}(\sigma_1) = \varnothing \tag{4}$$

Final state σ_{12} :

(3)
$$\forall I \in R_{S_2}(\sigma_1), \quad I \notin W_{S_1}(\sigma) \stackrel{(1)}{\Longrightarrow} \sigma_1(I) = \sigma(I)$$

$$\stackrel{(2)}{\Longrightarrow} \begin{cases} R_{S_2}(\sigma_1) = R_{S_2}(\sigma) \\ W_{S_2}(\sigma_1) = W_{S_2}(\sigma) \\ \forall I \in W_{S_2}(\sigma), \quad \sigma_{12}(I) = \sigma_2(I) \end{cases}$$
(4) $\forall I \in W_{S_1}, \quad I \notin W_{S_2} \Longrightarrow \sigma_{12}(I) = \sigma_1(I)$

$$\forall I \notin W_{S_1} \cup W_{S_2}, \quad \sigma(I) = \sigma_1(I) = \sigma_{12}(I)$$

Conditions to exchange two statements S_1 and S_2

Evaluation of S_2 ; S_1 : $\sigma \xrightarrow{S_2} \sigma_2 \xrightarrow{S_1} \sigma_{21}$ Assumptions:

$$\forall \sigma, \quad W_{S_2}(\sigma) \cap R_{S_1}(\sigma_2) = \varnothing \tag{5}$$

$$\forall \sigma, \quad W_{S_2}(\sigma) \cap W_{S_1}(\sigma_2) = \varnothing \tag{6}$$

Final state σ_{21} :

$$(5)\forall I \in R_{S_1}(\sigma_2), \quad I \notin W_{S_2}(\sigma) \stackrel{(1)}{\Longrightarrow} \sigma_2(I) = \sigma(I)$$

$$\stackrel{(2)}{\Longrightarrow} \left\{ \begin{array}{l} R_{S_1}(\sigma_2) = R_{S_1}(\sigma) \\ W_{S_1}(\sigma_2) = W_{S_1}(\sigma) \\ \forall I \in W_{S_1}(\sigma_2), \quad \sigma_{21}(I) = \sigma_1(I) \end{array} \right.$$

(6)
$$\forall I \in W_{S_2}(\sigma), I \notin W_{S_1}(\sigma_2) \Rightarrow \sigma_{21}(I) = \sigma_2(I)$$

$$\forall I \notin W_{S_1}(\sigma_2), \cup W_{S_2}(\sigma) \quad \sigma(I) = \sigma_2(I) = \sigma_{21}(I)$$

Bernstein's Conditions to Exchange S_1 and S_2

Necessary condition:

$$\forall \sigma \quad \text{let } \sigma_1 = S_1(\sigma), \ \sigma_2 = S_2(\sigma)$$

$$\begin{aligned} & W_{S_1}(\sigma) \cap R_{S_2}(\sigma_1) = \varnothing \\ & W_{S_1}(\sigma) \cap W_{S_2}(\sigma_1) = \varnothing \\ & W_{S_2}(\sigma) \cap R_{S_1}(\sigma_2) = \varnothing \\ & W_{S_2}(\sigma) \cap W_{S_1}(\sigma_2) = \varnothing \end{aligned} \end{aligned} \} \Longrightarrow \left\{ \begin{aligned} & W_{S_1}(\sigma) \cap R_{S_2}(\sigma) = \varnothing \\ & W_{S_1}(\sigma) \cap W_{S_2}(\sigma) = \varnothing \\ & W_{S_2}(\sigma) \cap R_{S_1}(\sigma) = \varnothing \end{aligned} \right.$$

according to the two previous slides.

Introduction

Starting from Bernstein's conditions

- Let's assume: $\forall \sigma \ W_{S_1}(\sigma) \cap R_{S_2}(\sigma) = \emptyset$
- This implies by (1): $\forall \sigma \ \forall I \in R_{S_2}$ $(S_1(\sigma))(I) = \sigma(I)$
- Hence by (2): $\forall \sigma \ R_{S_0}(\sigma_1) = R_{S_0}(\sigma) \land W_{S_0}(\sigma_1) = W_{S_0}(\sigma)$

- In the same way: $\forall \sigma \ W_{S_2}(\sigma) \cap R_{S_1}(\sigma) = \emptyset$
- Implies: $R_{S_1}(\sigma_2) = R_{S_1}(\sigma) \wedge W_{S_1}(\sigma_2) = W_{S_1}(\sigma)$

So Bernstein's conditions are sufficient to prove:

$$\forall \sigma \quad (S_1; S_2)(\sigma) = (S_2; S_1)(\sigma)$$

Coarse grain parallelization of a loop

- ullet Let's assume convex array regions R_B and W_B for the loop body
- Let P_B be the body precondition and $T_{B,B}^+$ the inter-iteration transformer
- Direct parallelization of a loop using convex array regions with Bernstein's conditions for the iterations of the body B:

$$\forall v \in Id \quad \forall \sigma, \sigma' \in P_B \text{ s.t. } T_{B,B}^+(\sigma, \sigma')$$

$$R_{B,v}(\sigma) \cap W_{B,v}(\sigma') = \emptyset$$

$$R_{B,v}(\sigma') \cap W_{B,v}(\sigma) = \emptyset$$

$$W_{B,v}(\sigma) \cap W_{B,v}(\sigma') = \emptyset$$

- Note: $T_{B,B}^+(\sigma,\sigma') \Rightarrow \sigma(i) < \sigma'(i)$ where i is the loop index
- Each iteration can be interchanged with any other one.
- No dependence graph, no restrictions on loop body, no restriction on control, no restriction on references, no restriction on loop bounds...

Coarse Grain Parallelization of a Loop with Privatization

- Beyond Bernstein's conditions, use IN_B and OUT_B array regions instead of R_B and W_B regions
- Insure non-interference for interleaved execution: privatization or expansion for locations in $W_B OUT_b$
- OUT_B can be over-approximated with OUT_B because it is used to decide the parallelization
- W_B cannot be overapproximated
- Must be combined with reduction detection

Fusion of Loops L_1 and L_2 with delay d

- for(i1...) S1; for(i2...) S2
- initial schedule:

$$S_1^0
ightarrow S_1^1
ightarrow S_1^2
ightarrow S_1^3
ightarrow S_1^4 \
ightarrow S_2^0
ightarrow S_2^1
ightarrow S_2^2
ightarrow S_2^3
ightarrow S_2^4
ightarrow$$

new schedule:

$$S_1^0 \ \rightarrow \ S_1^1 \ \rightarrow \ S_2^0 \ \rightarrow \ S_1^2 \ \rightarrow \ S_2^1 \ \rightarrow \ S_1^3 \ \rightarrow \ S_2^2 \ \rightarrow \ S_1^3$$

• for(...) S1; for(...) {S1;S2} for(...) S2

Fusion of Loops L_1 and L_2 with delay d: Legality

- Assumes convex array regions R_1 and W_1 for body B_1 of loop L_1 with index i_1 , R_2 and W_2 for body B_2 of loop L_2 with index i_2
- Permutation of the last iterations of L_1 and the first iterations of L_2 with a delay d:

$$\forall \sigma_1 \ \forall \sigma_2 \quad P_1(\sigma_1) \land P_2(\sigma_2) \land T_{12}(\sigma_1, \sigma_2) \land \sigma_1(i_1) > \sigma_2(i_2) + d$$

$$R_1(\sigma_1) \cap W_2(\sigma_2) = \varnothing$$

$$R_2(\sigma_2) \cap W_1(\sigma_1) = \varnothing$$

$$W_1(\sigma_1) \cap W_2(\sigma_2) = \varnothing$$

- \bullet P_1 , P_2 , T_{12} , R_1 , W_1 , R_2 , W_2 can be all over-approximated
- Check emptiness of convex sets for a polyhedral instantiation
- No restrictions on B_1 nor B_2 nor the loop index identifiers or ranges

Fusion of Loops L_1 and L_2 with delay d: Profitability

Reduce memory loads:

$$\left(\bigcup_{\sigma_1 \in P_1} R_1(\sigma_1)\right) \quad \bigcap \quad \bigcup_{\sigma_2 \in P_2 \cap T_{1,2}(\sigma_1)} R_2(\sigma_2) \neq \emptyset$$

• Avoid intermediate store and reloads:

$$\left(\bigcup_{\sigma_1\in P_1}W_1(\sigma_1)\right) \quad \bigcap \quad \bigcup_{\sigma_2\in P_2\cap T_{1,2}(\sigma_1)}R_2(\sigma_2) \neq \emptyset$$

With minimal cache size:

$$\left| \left(\bigcup_{\sigma_1 \in P_1} \left(R_1(\sigma_1) \ \cup \ W_1(\sigma_1) \right) \right) \quad \bigcup \quad \bigcup_{\sigma_2 \in P_2 \cap T_{1,2}(\sigma_1)} \left(R_2(\sigma_2) \ \cup \ W_2(\sigma_2) \right) \right|$$

Array privatization

Introduction

An array a is privatizable in a loop I with body B if

$$\forall \sigma \in P_B$$
, $IN_{B,a}(\sigma) = OUT_{B,a}(\sigma) = \varnothing$

 IN_{B,a} is the set of elements of a whose input values are used in B. For a sequence S1; S2:

$$IN_{S_1;S_2} = IN_{S_1} \cup ((IN_{S_2} \circ T_{S_1}) - W_{S_1})$$

• $OUT_{B,a}(\sigma)$ is the set of elements of a whose output values are used by the continuation of B executed in memory state σ . For a sequence S1;S2:

$$OUT_{S_1} = (OUT_{S_1;S_2} - W_{S_2} \circ T_{S_1}) \cup (W_{S_1} \cap IN_{S_2} \circ T_{S_1})$$

Examples of IN and OUT regions

printf("%d\n", b[0]); }

Source code for function foo

```
void foo(int n, int i, int a[n], int b[n]) {
    a[i] = a[i]+1;
    i++;
    b[i] = a[i]; }

• Source code for main:
    int main() {
        int a[100], b[100], i;
        foo(100, i, a, b);
```

• R, W, IN and OUT array regions for call site to foo:

```
// <a[PHI1]-R-EXACT-{i<=PHI1, PHI1<=i+1}>
// <a[PHI1]-W-EXACT-{PHI1==i}>
// <b[PHI1]-W-EXACT-{PHI1==i+1}>
// <a[PHI1]-IN-EXACT-{i<=PHI1, PHI1<=i+1}>
// <b[PHI1]-OUT-EXACT-{PHI1==0, PHI1==i+1}>
foo(100, i, a, b);
```


Properties of IN regions

Introduction

• If two states σ and σ' assign the same values to the locations in IN_S , statement S produces the same trace with σ and σ' :

$$\forall \sigma \quad \forall \sigma'$$

$$\forall I \in IN_{S}(\sigma), \sigma(I) = \sigma'(I) \Rightarrow \begin{cases} R_{S}(\sigma) = R_{S}(\sigma') \\ W_{S}(\sigma) = W_{S}(\sigma') \\ IN_{S}(\sigma) = IN_{S}(\sigma') \\ \forall I \in W_{S}(\sigma), (S(\sigma))(I) = (S(\sigma'))(I) \end{cases}$$

- Almost identical to property for R regions
- But also $\forall \sigma \quad \forall \sigma'$:

$$\forall I \notin \bigcup_{\sigma \in P_S} \Big(R_S(\sigma) - IN_S(\sigma) \Big), \ \sigma(I) = \sigma'(I) \Rightarrow \textit{Equivalent}_S(\sigma, \sigma')$$

Properties of OUT regions

 The values of variables written by S but not used later do not matter:

$$\forall \sigma, \forall \sigma', \forall I \notin \bigcup_{\sigma \in P_S} \left(W_S(\sigma) - OUT_S(\sigma) \right),$$

$$(S(\sigma))(I) = (S(\sigma'))(I) \Rightarrow Equivalent_C(\sigma, \sigma')$$
(8)

• In other words, statement S can be substituted by statement S' in Program Π if they only differ by writing different values in memory locations that are not read by the continuation

Scalarization

Introduction

• Replace a set of array references by references to a local scalar:

$$a[j]=0; for(i...)$$
 { ... $a[j]=a[j]*b[i];...$ } $\rightarrow s=0; for(i...)$ { ... $s*=b[i];...$ } $a[j]=s;$

- Let B and i be a loop body and index, and W_B the write region function
- Sufficient condition: each loop iteration accesses only one array element
- Let $f: Val \to \mathcal{P}(\Phi) \ s.t. \ f(v) = \{\phi \mid \exists \sigma: \ \sigma(i) = v \land (a, \phi) \in W_B(\sigma)\}$
- If f is a mapping $Val \rightarrow \Phi$, array a can be replaced by a scalar.
- Initialization and exportation according to IN_B and OUT_B .

Conclusion

Statement Isolation

• Goal: replace S by a new statement S' executable with a different memory M':

```
i=i+1;

→ {int j; j=i; j=j+1; i=j;}
```

- Let S be a statement with regions R_S , W_S , IN_S and OUT_s .
- Declare new variables new(I) for $I \in \bigcup_{\sigma \in P_S} (R_S(\sigma) \cup W_S(\sigma))$
- Copy in: $\forall I \in IN_S(\sigma) \ M'[new(I)] = M[I]$
- Substitute all references to I by references to new(I) in S
- Copy out: $\forall I \in OUT_S(\sigma) \ M[I] = M'[new(I)]$

Statement Isolation

Introduction

• Goal: replace S by a new statement S' executable with a different memory M':

```
i=i+1;

→ {int j; j=i; j=j+1; i=j;}
```

- Let S be a statement with regions R_S , W_S , IN_S and OUT_s .
- Declare new variables new(I) for $I \in \bigcup_{\sigma \in P_S} (R_S(\sigma) \cup W_S(\sigma))$
- Copy in: $\forall I \in IN_S(\sigma) \ M'[new(I)] = M[I]$
- Substitute all references to I by references to new(I) in S
- Copy out: $\forall I \in OUT_S(\sigma) \ M[I] = M'[new(I)]$
- Copy out fails because of over-approximations of OUT_S!
- Copy in: $\forall I \in \overline{(IN_S(\sigma))} \cup \overline{(OUT_S(\sigma))} \ M'[new(I)] = M[I]$
- related to outlining and privatization and localization

Introduction

Induction variable substitution

• Substitute k by its value, function of the loop index i:

$$k=0$$
; for(i=0;...) { $k+=2$; b[k] = ...}
for(i=0;...) { b[2*i+2] = ...}

 Variable k can be substituted in statement S with precondition P_S within a loop of index i if P_S defines a mapping from $\sigma(i)$ to $\sigma(k)$:

$$v \to \{v' | \exists \sigma \in P_S \ \sigma(i) = v \land \sigma(k) = v'\}$$

Constant Propagation

Replace references by constants:

$$if(j==3) a[2*j+1]=0;$$

 $if(j==3) a[7]=0;$

• An expression e can be substituted under precondition P if: $|\{v \in Val | \exists \sigma \in P \ v = \mathcal{E}(e, \sigma)\}| = 1$

Simplify expressions:

$$if(i+j==n) a[i+j]=0;$$

 $if(i+j==n) a[n]=0;$

Dependence Test for Allen&Kennedy Parallelization

- If you insist on:
 - using an algorithm with restricted applicability
 - reducing locality with loop distribution
- Use array regions to deal at least with procedure calls
- Dependence system for two regions of array a in statements S_1 and S_2 in a loop nest \vec{i} :

$$\{(\sigma_1, \sigma_2) \mid \sigma_1(\vec{\imath}) \prec \sigma_2(\vec{\imath}) \land T_{S_1, S_2}(\sigma_1, \sigma_2) \land P_{S_1}(\sigma_1) \land P_{S_2}(\sigma_2) \land R_{S_1}^a(\sigma_1) \cap W_{S_2}^a(\sigma_2)\} = \varnothing$$

$$(9)$$

 Useful for tiling, which includes all unimodular loop transformations

Conclusion

Dead code elimination

Introduction

Remove unused definitions:

```
int foo(int i) {int j=i+1; i=2; int k=i+1; return
j;}
\rightarrow int foo(int i) {int j=i+1; return j;}
```

- Useless? See some automatically generated code
- Useless? See some manually maintained code ©
- Any statement S with no OUT_S region?
- Possible, but not efficient with the current semantics of OUT regions in PIPS

Code synthesis

Time-out!

- Declarations
- Control
- Communications
- Copy operations

Conclusion: simple polyhedral conditions in a compiler

- Difficulties hidden in a few analyses, available with PIPS:
 T, P, W, R, IN, OUT
- Legality of many program transformations can be checked with analyses:
 mapping, function, empty set,...
- Yes, quite often:
 Control simplification, constant propagation, partial evaluation, induction variable substitution, privatization, scalarization, coarse grain loop parallelization, loop fusion, statement isolation,...
- But not always: graph algorithms are useful too Dead code elimination,... wih OUT regions?

Conclusion: what might go wrong with polyhedra?

- The analysis you need is not available in PIPS:
 re-use existing analyses to implement it
- Its accuracy is not sufficient: implement a dynamic analysis (a.k.a. instrumentation)
- The worst case complexity is exponential: exceptions are necessary for recovery
- Monotonicity of results on space, time or magnitude exceptions:
 more work needed, exploit parallelism within PIPS
- Possible recomputation of analyses after each transformation: more work needed, composite transformations...

Conclusion: see what is available in PIPS!

- Many more program transformations
- Pointer analyses are improving
- Try PIPS with no installation cost: http://paws.pips4u.org
 On-going work... Do not overload our PIPS server ©
- Or install it: http://pips4u.org
- Or install Par4all: http://www.par4all.org
- Or simply talk to us!

Questions?