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Introduction

Our historical goals

o Find large grain data and task parallelism
includes medium and fine grain parallelism

Still holding today for manycore and GPU computing!
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o Find large grain data and task parallelism
includes medium and fine grain parallelism

@ Interprocedural analyses: whole program compilation

e full inlining is ineffective because of complexity
e cannot cope with recursion

@ Interprocedural transformations
selective inlining and outlining and cloning are useful

@ No restrictions on input code...
Fortran 77, 90, C, C99

@ Hence decidability issues = over-approximations

@ But exact analyses when possible

Still holding today for manycore and GPU computing!

Francois Irigoin & al. RenPar 2011, Saint-Malo, 12 May 2011



Introduction

Polyhedral School of Fontainebleau... vs Polytope Model

@ Summarization/abstraction vs exact information

@ No restrictions on input code
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Introduction
Simplified notations

Identifiers i, a, Locations / or (a, ¢), Values
Environment: p: Id — Loc
Memory state: o : Loc — Val, o(i) =0
Preconditions: P(o) C &,
for(i=0; i<mn; i++) {...} —{0o]0<0o(i) <o(n)}
e Transformers: T(o,0') C X x X,

it+; — {(0,0)[0’(i) = (i) + 1}
@ Array regions: R : Y — Loc,

alil — o —{(a,¢)[ ¢ =0(i)}
@ Statements 5,51, € ¥ — ¥
function call, sequence, test, loop, CFG...

e 6 o6 o

@ Programs [1: a statement
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Bernstein’s Conditions
Convex Array Region for a Reference

’ Ws, (o) = {(a,¢) |0 < ¢ <5}
for(i=0; i<5; i++)
Ws,(0) ={(a;¢) [¢=0(i) [ NO< (i) <5]}

i a[i]=0;
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Bernstein’s Conditions
Convex Array Regions of Statement S

Vo VI¢ Ws(a), o(l)=(S(0))()) (1)

Note: The property holds for any over-approximation Ws of Ws.

| A

Property of a read region Rs

Vo Vo' (2)
Rs(o) = Rs(o”)
Vi€ Rs(o),a(l)=0o'(l) = < Ws(o) = Ws(c')
Vi e Ws(a),(5(0)) () = (S(e")(/)
Note: The property holds for any over-approximation Rs of Rs in the
left-hand side, but not for other over-approximations.
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Bernstein’s Conditions

Conditions to exchange two statements S; and S,

. S S
Evaluation of Si: Sy: 0 =5 01 = o190

Assumptions:

Vo, Ws,(0)N Rs,(01) =@ (3)
Vo, W51(O') N W52(0'1) =0 (4)
Final state o15:
(1)

(3) VI € Rs,(01), ¢ Ws,(0) = a1(l) = o(/)

@) R52(01) = R52(J)
= W52(O'1) = WSQ(U)
VI e W52(U), 012(/) = 02(/)

(4) VI e Wsl, / Qé W52 — 0'12(/) = 0'1(/)
V/¢ W51U W52, O‘(/):Ul(/)zalz(/)
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Bernstein’s Conditions

Conditions to exchange two statements S; and S,

. S S
Evaluation of S5: Si: 0 =5 09 =5 091

Assumptions:
Vo, Ws,(0)N Rs,(02) =@ (5)

Vo, WSQ(O') N WS1 (0'2) =J (6)
Final state o051

(5)VI € Rs,(02), | ¢ Ws,(0) 2 0s(1) = o(1)

@) R51 (02) = R51 (J)
= W51(J2) = W51 (U)
VI e WSI(UQ), 021(/) = 01(/)

(6) VI € Ws,(0), | ¢ Ws,(02)= o2(l) = 0o2(/)
A ¢ WSI(UQ),UW52(O') 0’(/) = 02(/) = 0'21(/)
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Bernstein’s Conditions
Bernstein's Conditions to Exchange S; and S5,

@ Necessary condition:

Vo let o1 = 51(0), 02 = S2(0)

WSI(U) N R52(0') =J
— Wsl(a)ﬂWSQ(O’):@
WSg(O') N Rsl(O') =J

according to the two previous slides.
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Bernstein’s Conditions

Starting from Bernstein's conditions

Let's assume: Vo Ws, (o) N Rs,(0) = @
This implies by (1): Yo VI € Rs, (S51(0))(/) = o(/)
Hence by (2): Yo Rs,(01) = Rs,(0) A Ws,(01) = Ws,(0)

@ In the same way: Vo Ws,(0) N Rs,(0) = @
o Implies: Rs,(02) = Rs,(0) A Ws,(02) = Ws, (o)

So Bernstein's conditions are sufficient to prove:

Vo (S1;5)(0) = (S2:51)(0)
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Scheduling

Coarse grain parallelization of a loop

@ Let's assume convex array regions Rg and Wpg for the loop body

@ Let Pg be the body precondition and T;)B the inter-iteration
transformer

@ Direct parallelization of a loop using convex array regions with
Bernstein's conditions for the iterations of the body B:
Vv eld VYo,0' € Pg s.t. T‘.;B(m a’)
Rev(o)N Wg ,(c') =@
Re(c")N Wg (o) =@
WB’V(U) N WB,V(O'I) =
@ Note: TEB(U, o) = o(i) < o'(i) where i is the loop index
@ Each iteration can be interchanged with any other one.

@ No dependence graph, no restrictions on loop body, no restriction on
control, no restriction on references, no restriction on loop bounds...
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Scheduling

Coarse Grain Parallelization of a Loop with Privatization

@ Beyond Bernstein’s conditions, use INg and OUTpg array
regions instead of Rg and Wpg regions

@ Insure non-interference for interleaved execution: privatization
or expansion for locations in Wg — OUT,

@ OUTpg can be over-approximated with OUTpg because it is
used to decide the parallelization

@ Wpg cannot be overapproximated

@ Must be combined with reduction detection
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Fusion of Loops L; and L, with delay d

@ for(il...) Si1; for(i2...) 82

@ initial schedule:

5> %~ 8 - st

A\
50 1 2 3

2 7 92 7 92 T 9 7 Sﬁl -
@ new schedule:

P - § - S - §2 - sl - S 5 S22 -

e for(...) S1; for(...) {S1;82} for(...) 82
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Scheduling

Fusion of Loops Ly and L, with delay d: Legality

@ Assumes convex array regions Ry and W for body B; of loop Ly
with index iy, R, and W, for body B, of loop L, with index i

@ Permutation of the last iterations of L; and the first iterations of L,
with a delay d:

Vo1 Yoo P1(0'1) N PQ(Uz) VAN T12(O’1, 0'2) A\ Ul(il) > O'g(iz) +d

Rl(O'l) N W2(0'2) =J
R2(0'2) N Wl(al) %)
Wl(O'l) n WQ(O'Q) =J

@ Py, P, T1p, Ri, Wi, Ry, W5 can be all over-approximated
@ Check emptiness of convex sets for a polyhedral instantiation

@ No restrictions on B; nor By nor the loop index identifiers or ranges
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Scheduling

Fusion of Loops L; and L, with delay d: Profitability

@ Reduce memory loads:

( U Rl(ol)) N U Rilo2) # @

o1€P1 UQGPZﬂTl,Z(O’l)

@ Avoid intermediate store and reloads:

(U w) N U Rl # 2

o1€EPL 02€P,NTy 2(01)

@ With minimal cache size:

(U (Rier) u waen)) U U (Ro2) U Wa(02))

g1EP; 0’2EP20T1’2(0'1)
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Memory
Array privatization

@ An array a is privatizable in a loop / with body B if
VYo € Pg, /NB@(O') = OUTB@(O') = g

@ INp , is the set of elements of a whose input values are used
in B. For a sequence S1;S2:

INs,;s, = INs, U ((INs, o Ts,) — W, )

@ OUTpg (o) is the set of elements of a whose output values
are used by the continuation of B executed in memory state
o. For a sequence S1;82:

OUTS1 = (OUT51;52 = W52 o T51) U (W51 N //V52 o T51)
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Memory

Examples of IN and OUT regions

@ Source code for function foo

void foo(int n, int i, int al[n], int b[n]) {
alil = alil+1;
it++;
bl[i]l = alil; }

@ Source code for main:

int main() {
int a[100], b[100], ij;
foo0(100, i, a, b);
printf("%d\n", b[0]); }

@ R, W, IN and OUT array regions for call site to foo:
// <al[PHI1]-R-EXACT-{i<=PHI1, PHI1<=i+1}>
// <a[PHI1]-W-EXACT-{PHI1==i}>
// <b[PHI1]-W-EXACT-{PHI1==i+1}>

// <a[PHI1]-IN-EXACT-{i<=PHI1, PHI1<=i+1}>
// <b[PHI1]-0UT-EXACT-{PHI1==0, PHI1==i+1}>

fo0(100, i, a, b);
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Memory
Properties of IN regions

o If two states o and ¢’ assign the same values to the locations
in INs, statement S produces the same trace with o and o’:

VYo Vo' (7)

Rs(o) = Rs(o')
Vi € INs(0), o (1) = o (1) = y/@ % //Vs(( ))
Vi e Ws(a), (S(a))(1) = (S(e"))(/)
@ Almost identical to property for R regions
@ But also Vo Vo' :

vi¢ | (Rs(a)—lN5(0)>, o(1) = o'(I) = Equivalent,(c, o)

g€Ps
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Properties of OUT regions

@ The values of variables written by S but not used later do not
matter:

¥o,%0", ¥ & Uyep, (Ws(o) — OUT(0)), ®)
(S(e))(1) = (S(o")(!) = Equivalentc(o,a’)
@ In other words, statement S can be substituted by statement
S" in Program [ if they only differ by writing different values
in memory locations that are not read by the continuation
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Memory
Scalarization

@ Replace a set of array references by references to a local scalar:
aljl=0; for(i...) { ... aljl=aljl*blil;...}
— 8=0; for(i...) {... sx=b[il;... } aljl=s;

@ Let B and i be a loop body and index, and Wg the write
region function

e Sufficient condition: each loop iteration accesses only one
array element

o Let
f:Val - P(®)s.t. f(v)={¢|TJo: o(i)=vA(a¢) € Wg(o)}
e If f is a mapping Val — ®, array a can be replaced by a scalar.

@ Initialization and exportation according to /Ng and OUTg.
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Memory
Statement lsolation

o Goal: replace S by a new statement S’ executable with a
different memory M’:

i=i+1;

— {int j; j=i; j=j+1; i=j;}

Let S be a statement with regions Rs, Ws, INs and OUTs.
Declare new variables new(/) for | € Usep.(Rs(o) U Ws(o))
Copy in: VI € INs(c) M'[new(/)] = M[/]

Substitute all references to / by references to new(/) in S
Copy out: VI € OUTs(o) M[l] = M'[new(])]
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Memory
Statement lsolation

o Goal: replace S by a new statement S’ executable with a
different memory M’:

i=i+1;

— {int j; j=i; j=j+1; i=j;}

Let S be a statement with regions Rs, Ws, INs and OUTs.
Declare new variables new(/) for | € Usep.(Rs(o) U Ws(o))
Copy in: VI € INs(c) M'[new(/)] = M[/]

Substitute all references to / by references to new(/) in S
Copy out: VI € OUTs(o) M[l] = M'[new(])]

Copy out fails because of over-approximations of OUTsg!
Copy in: VI € (INs(0)) U (OUTs(c)) M'[new(1)] = M[/]

related to outlining and privatization and localization

®© 6 6 6 66 o o o
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Other Transformations

Induction variable substitution

@ Substitute k by its value, function of the loop index i:
k=0; for(i=0;...) {k+=2; blk] = ...}
for(i=0;...) { b[2*i+2] = ...}

@ Variable k can be substituted in statement S with
precondition Pg within a loop of index i if Ps defines a
mapping from o (i) to o(k):

v— {V|30 € Ps o(i) =v Ao(k) =V}
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Other Transformations
Constant Propagation

@ Replace references by constants:
if(j==3) a[2*j+1]=0;
if(j==3) a[7]=0;

@ An expression e can be substituted under precondition P if:
{veVallGoc e Pv=~E(e,0)} =1

@ Simplify expressions:
if(i+j==n) a[i+j]=0;
if(i+j==n) a[n]=0;
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Other Transformations
Dependence Test for Allen&Kennedy Parallelization

@ If you insist on:

e using an algorithm with restricted applicability

e reducing locality with loop distribution
@ Use array regions to deal at least with procedure calls
@ Dependence system for two regions of array a in statements

51 and S, in a loop nest 7
{(o1,02) | 01(7) < 02(7) A Tsl s:(01,02) A Ps (1) A Ps,(02)
/\RS(O'l ﬂWS (o) }:
(9)

@ Useful for tiling, which includes all unimodular loop

transformations
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Other Transformations
Dead code elimination

@ Remove unused definitions:

int foo(int i) {int j=i+1; i=2; int k=i+1; return
s}

— int foo(int i) {int j=i+1; return j;}

Useless? See some automatically generated code

Useless? See some manually maintained code ®

Any statement S with no OUTs region?

e 6 o6 o

Possible, but not efficient with the current semantics of OUT
regions in PIPS
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Synthesis

Code synthesis

Time-out!

Declarations

e Control
@ Communications
°

Copy operations
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Conclusion

Conclusion: simple polyhedral conditions in a compiler

o Difficulties hidden in a few analyses, available with PIPS:
T,P,W,R,IN,OUT

@ Legality of many program transformations can be checked
with analyses:
mapping, function, empty set,...

@ Yes, quite often:
Control simplification, constant propagation, partial
evaluation, induction variable substitution, privatization,
scalarization, coarse grain loop parallelization, loop fusion,
statement isolation, ...

@ But not always: graph algorithms are useful too
Dead code elimination,... wih OUT regions?
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Conclusion

Conclusion: what might go wrong with polyhedra?

@ The analysis you need is not available in PIPS:
re-use existing analyses to implement it
@ lIts accuracy is not sufficient:
implement a dynamic analysis (a.k.a. instrumentation)
@ The worst case complexity is exponential:
exceptions are necessary for recovery
@ Monotonicity of results on space, time or magnitude
exceptions:
more work needed, exploit parallelism within PIPS

@ Possible recomputation of analyses after each transformation:
more work needed, composite transformations...
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Conclusion

Conclusion: see what is available in PIPS!

Many more program transformations

Pointer analyses are improving

Try PIPS with no installation cost: http://paws.pips4u.org
On-going work... Do not overload our PIPS server ©

Or install it: http://pips4u.org
Or install Par4all: http://www.par4all.org

Or simply talk to us!
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