
SPIRE: A Methodology for Sequential to Parallel Intermediate
Representation Extension

Dounia Khaldi, Pierre Jouvelot, François Irigoin and Corinne Ancourt
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Abstract. SPIRE is a new methodology for the design of parallel extensions of the intermediate repre-
sentations used in compilation frameworks of sequential languages. It can be used to leverage existing
infrastructures for sequential languages to address both control and data parallel constructs while pre-
serving as much as possible existing analyses for sequential and parallel code. We suggest to view this
upgrade process as an “intermediate representation transformer” at the syntactic and semantic levels;
we show this can be done via the introduction of only ten new concepts, collected in three groups,
namely execution, synchronization and data distribution, and precisely defined via a formal semantics
and rewriting rules.
We use the sequential intermediate representation of PIPS, a comprehensive source-to-source compila-
tion platform, as a use case for our approach. We introduce our SPIRE parallel primitives, extend PIPS
intermediate representation and show how example code snippets from the OpenCL, Cilk, OpenMP,
X10, Habanero-Java, MPI and Chapel parallel programming languages can be represented this way.
A formal definition of SPIRE operational semantics is provided, built on top of the one used for the
sequential intermediate representation. We assess the generality of our proposal by (1) showing how a
different sequential IR, namely LLVM, can be extended to handle parallelism using the SPIRE method-
ology and (2) providing implementation and run-time performance data of a SPIRE-derived paralleliza-
tion process.
Our primary goal with the development of SPIRE is to provide, at a low cost, powerful parallel program
representations that will ease the design of efficient automatic parallelization algorithms. More gener-
ally, our work provides a possible roadmap for the compiler designers who need to introduce parallel
features into their own infrastructures.
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1 Introduction

The growing importance of parallel computers and the search for an efficient programming model led, and
is still leading, to a proliferation of parallel programming languages such as, currently, Cilk [1], Chapel [2],
X10 [3], Habanero-Java [4], OpenMP [5], OpenCL [6] or MPI [7]. To adapt to such an evolution, com-
pilers need to introduce internal intermediate representations (IR) for parallel programs. The choice of a
proper parallel IR is of key importance, since the efficiency and power of the transformations and optimiza-
tions these compilers can perform are closely related to the selection of a proper program representation
paradigm. Yet, given the wide variety of the existing programming models, it would be better, from a soft-
ware engineering point of view, to find a unique parallel IR, as general and simple as possible.



Existing proposals for program representation techniques already provide a basis for the exploitation
of parallelism via the encoding of control and/or data flow information. HPIR [8], PLASMA [9] or In-
sPIRe [10] are instances that operate at a high abstraction level, while the hierarchical task, stream or pro-
gram dependence graphs (we survey these notions in Section 2) are better suited to graph-based approaches.
Yet many more existing compiler frameworks use traditional representations for sequential-only programs,
and changing their internal data structures or adding ad-hoc built-ins to deal with parallel constructs is a
difficult and time-consuming task.

The main motivation behind the design of the methodology introduced in our paper is to preserve the
many years of development efforts invested in huge compiler platforms such as GCC (more than 7 million
lines of code), PIPS (600 000 lines of code), LLVM (more than 1 million lines of code),... when upgrading
their intermediate representations to handle parallel languages, as source languages or as targets for source-
to-source transformations. We provide an evolutionary path for these large software developments via the
introduction of the Sequential to Parallel Intermediate Representation Extension (SPIRE) methodology that
we show that can be plugged into existing compiler projects in a rather simple manner.

SPIRE is based on only three key concepts: (1) the parallel vs. sequential execution of groups of state-
ments such as sequences, loops and general control-flow graphs, (2) the global synchronization character-
istics of statements and the specification of finer grain synchronization via the notion of events and (3)
the handling of data distribution for different memory models. To illustrate how this approach can be used
in practice, we use SPIRE to extend the intermediate representation (IR) [11] of PIPS [12], a comprehen-
sive source-to-source compilation and optimization platform, and of LLVM [13], a widespread SSA-based
compilation infrastructure.

The design of SPIRE is the result of many trade-offs between generality and precision, abstraction and
low-level concerns. On the one hand, and in particular when looking at source-to-source optimizing com-
piler platforms adapted to multiple source languages, one needs to be able to represent as many of the
existing (and, hopefully, future) parallel constructs while minimizing the number of new concepts intro-
duced in the parallel IR. Yet, keeping only a limited number of hardware-level notions in the IR, while
good enough to deal with all parallel constructs, would entail convoluted rewritings of high-level parallel
flows. We used an extensive survey of key parallel languages, namely Cilk, Chapel, X10, Habanero-Java,
OpenMP, OpenCL and MPI, to guide our design of SPIRE, while showing how to express their relevant
parallel constructs within SPIRE.

The four contributions of this paper are:

– SPIRE, a new, simple, parallel intermediate representation extension methodology for designing the
parallel IRs used in compilation frameworks; it leverages their existing infrastructure for sequential
languages to address control and data parallelism and data distribution;

– the application of SPIRE to the IR used in the PIPS compilation framework, yielding a parallel IR to be
used for both automatic task-level parallelization and the optimization of explicitly parallel programs;

– the small-step, operational semantics of the SPIRE transformation process, to formally define how its
key parallel concepts are added to existing systems;

– an evaluation of the generality of SPIRE, by showing how our methodology can be applied to another
IR, namely the IR of the widely-used LLVM system, and providing implementation and run-time per-
formance data for a SPIRE-derived parallelization process.

After this introduction, we survey existing parallel IRs in Section 2. We describe our use-case sequen-
tial IR, used by the PIPS compilation framework, in Section 3. Our parallel extension proposal, SPIRE, is
introduced in Section 4, where we also show how simple illustrative examples written in OpenCL, Cilk,



OpenMP, X10, Habanero-Java, MPI and Chapel can be easily represented within SPIRE. The formal oper-
ational semantics of SPIRE is given in Section 5. Section 6 shows the generality of SPIRE by showing its
use on LLVM and discusses performance results. We discuss future work and conclude in Section 7.

2 Related Work

In this section, we review several different possible representations of parallel programs, both at the high,
syntactic, and mid, graph-based, levels. We provide synthetic descriptions of the key existing IRs addressing
similar issues to our paper’s. Bird’s eye view comparisons with SPIRE are also given here, although a more
extensive analysis of existing IRs would require more space than permitted by the paper format.

Syntactic approaches to parallelism expression use abstract syntax tree nodes, while adding specific
parallel built-in functions. For instance, the intermediate representation of the implementation of OpenMP
in GCC (GOMP) [14] extends its three-address representation, GIMPLE [15]. The OpenMP parallel di-
rectives are replaced by specific built-ins in low- and high-level GIMPLE, and additional nodes in high-
level GIMPLE, such as the sync fetch and add built-in function for an atomic memory access ad-
dition. Similarly, Sarkar and Zhao introduce the high-level parallel intermediate representation HPIR [8]
that decomposes Habanero-Java programs into region syntax trees, while maintaining additional data struc-
tures on the side: region control-flow graphs and region dictionaries. New program instructions are intro-
duced: AsyncRegionEntry and AsyncRegionExit delimit tasks, while FinishRegionEntry
and FinishRegionExit can be used in parallel sections. SPIRE borrows some of the ideas used in
GOMP or HPIR, but frames them in more structured settings while trying to be more language-neutral; in
particular, we try to minimize the number of additional built-in functions, which have the drawback of hid-
ing the abstract high-level structure of parallelism. Applying the SPIRE approach to systems such as GCC
would have provided a minimal set of extensions that could have also been used for other implementations
of parallel languages that rely on GCC as a backend, such as Cilk.

PLASMA is a programming framework for heterogeneous SIMD systems, with an IR [9] that abstracts
data parallelism and vector instructions. It provides specific operators such as add on vectors and special
instructions such as reduce and par. While PLASMA abstracts SIMD implementation and compilation
concepts for SIMD accelerators, SPIRE is more architecture-independent and also covers control paral-
lelism.

InsPIRe is the parallel intermediate representation at the core of the source-to-source Insieme com-
piler [10] for C, C++, OpenMP, MPI and OpenCL programs. Parallel constructs are encoded using built-
ins. SPIRE intends to also cover source-to-source optimization. We believe it could have been applied to
Insieme sequential components, parallel constructs being defined as extensions of the sequential abstract
syntax tree nodes of InsPIRe instead of using numerous built-ins.

Turning now to mid-level intermediate representations, many systems rely on graph structures for rep-
resenting sequential code, and extend them for parallelism. The Hierarchical Task Graph [16] represents
the program control flow. The hierarchy exposes the loop nesting structure; at each loop nesting level, the
loop body is hierarchically represented as a single node that embeds a subgraph that has control and data
dependence information associated with it. SPIRE is able to represent both structured and unstructured
control-flow dependence, thus enabling recursively-defined optimization techniques to be applied easily.
The hierarchical nature of underlying sequential IRs can be leveraged, via SPIRE, to their parallel exten-
sions; this feature is used in the PIPS case addressed below.

A stream graph [17] is a dataflow representation introduced specifically for streaming languages. Nodes
represent data reorganization and processing operations between streams, and edges, communications be-



tween nodes. The number of data samples defined and used by each node is supposed to be known statically.
Each time a node is fired, it consumes a fixed number of elements of its inputs and produces a fixed num-
ber of elements on its outputs. SPIRE provides support for both data and control dependence information;
streaming can be handled in SPIRE using its point-to-point synchronization primitives.

The parallel program graph (PPDG) [18] extends the program dependence graph [19], where vertices
represent blocks of statements and edges, essential control or data dependences; mgoto control edges are
added to represent task creation occurrences, and synchronization edges, to impose ordering on tasks. Kim-
ble IR [20] uses an intermediate representation designed along the same lines, i.e., as a hierarchical direct
acyclic graphs (DAG) on top of GCC IR, GIMPLE. Parallelism is expressed there using new types of nodes:
region, which is a subgraph of clusters, and cluster, a sequence of statements to be executed by one thread.
Like PPDG and Kimble IR, SPIRE adopts an extension approach to “parallelize” existing sequential inter-
mediate representations; our paper shows that this can be defined as a general mechanism for parallel IR
definitions and provides a formal specification of this concept.

LLVM IR [13] represents each function as control flow graphs. To encode parallel constructs, LLVM
introduces the notion of metadata such as llvm.loop.parallel for implementing parallel loops. A
metadata is a string used as an annotation on the LLVM IR nodes. LLVM IR lacks support for other parallel
constructs such as starting parallel threads, synchronizing them, etc. We present in Section 6.1 our proposal
for a parallel IR for LLVM via the application of SPIRE to LLVM.

3 PIPS (Sequential) IR

Since this paper introduces SPIRE as an extension formalism for existing intermediate representations, a
sequential, base case IR is needed to present our proposal. We chose the IR of PIPS [12] to showcase our
approach, since it is readily available, well-documented and encodes both control and data dependences.
To help support our claim of the generality of our approach, Section 6.1 illustrates another application of
SPIRE, this time on LLVM [13].

PIPS is a powerful source-to-source compilation and optimization platform; its intermediate represen-
tation (IR) [11] of sequential programs is a hierarchical data structure that embeds both control flow graphs
and abstract syntax trees. To describe SPIRE, we show how to extend this IR to parallel programs in order
to obtain an abstraction for parallel languages for optimization and transformation purposes.

We provide in this section a high-level description of the intermediate representation of PIPS; it is
specified using Newgen [21], a Domain Specific Language for the definition of set equations from which a
dedicated API is automatically generated to manipulate (creation, access, IO operations...) data structures
implementing these set elements. Since our purpose is to highlight the design of parallel extensions, many
of these sets remain unchanged; this section contains only a slightly simplified subset of the intermediate
representation of PIPS, the part that is directly related to the parallel paradigms in SPIRE. The Newgen
definition of this part is given in the Figure 1:

– Control flow in PIPS IR is represented via instructions, members of the disjoint union (using the “+”
symbol) set instruction. An instruction can be either a simple call or a compound instruction, i.e.,
a for loop, a sequence or a control flow graph. A call instruction represents built-in or user-defined
function calls; for instance, assign statements are represented as calls to the “:=” function. The call
set is not defined here.

– Instructions are included within statements, which are members of a Cartesian product set that also in-
corporates the declarations of local variables; thus a whole function is represented in PIPS IR as a state-
ment. In Newgen, a given set component can be distinguished using a prefix such as declarations



here; all named objects such as user variables or built-in functions in PIPS are members of the entity
set (the value set denotes constants while the “*” symbol introduces Newgen list sets).

– Compound instructions can be either (1) a loop instruction, which includes an iteration index variable
with its lower, upper and increment expressions and a loop body (the expression set definition is not
provided here), (2) a sequence, i.e., a succession of statements, encoded as a list, or (3) an unstructured
control flow graph.

– Programs that contain structured (continue, break and return) and unstructured (goto) trans-
fers of control are handled in the PIPS intermediate representation via the unstructured set. An
unstructured instruction has one entry and one exit control node; a control is a node in a graph
labeled with a statement and its lists of predecessor and successor control nodes. Executing an unstruc-
tured instruction amounts to following the control flow induced by the graph successor relationship,
starting at the entry node, while executing the node statements, until the exit node is reached.

instruction = call + forloop + sequence + unstructured;
statement = instruction x declarations:entity*;
entity = name:string x type x initial:value;
forloop = index:entity x lower:expression x upper:expression x

step:expression x body:statement;
sequence = statements:statement*;
unstructured = entry:control x exit:control;
control = statement x predecessors:control* x successors:control*;

Fig. 1: Simplified Newgen definitions of the PIPS IR

4 SPIRE, a Sequential to Parallel IR Extension Methodology

In this section, we present in detail the SPIRE methodology, which can be used to add parallel concepts to
sequential IRs. After introducing our design philosophy, we describe the application of SPIRE on the PIPS
IR. We illustrate these SPIRE-derived constructs with code excerpts from various parallel programming
languages; our intent is not to provide here general rewriting techniques from these to SPIRE (this would
be way out of the scope of this paper), but to provide hints on how such rewritings might possibly proceed.
Note that, in Section 6.1, using LLVM, we show that our approach is general enough to be adapted to other
IRs.

4.1 Design Approach

SPIRE intends to be a practical methodology to extend existing sequential IRs to adapt to parallelism
issues, either to generate parallel code from sequential programs or address explicitly parallel programming
languages. Interestingly, the idea of seeing the issue of parallelism as an extension over sequential concepts
is in sync with Dijkstra’s view that “parallelism or concurrency are operational concepts that refer not
to the program, but to its execution.” [22]. If one accepts such a vision, adding parallelism extensions to



existing IRs, as advocated by our approach with SPIRE, can thus, at a fundamental level, not be seen as an
afterthought but as a consequence of the fundamental nature of parallelism.

Our design of SPIRE does not intend to be minimalist but to be as seamlessly as possible integrable
within actual IRs, while able to handle as many parallel programming constructs as possible. To be suc-
cessful, our design point must provide proper trade-offs between generality, expressibility and conciseness
of representation. We used an extensive survey of existing parallel languages to guide us during this design
process. Table 1, which extends the one provided in [23], summarizes the main characteristics of seven
recent and widely used parallel languages: Cilk, Chapel, X10, Habanero-Java, OpenMP, OpenCL and MPI.
The main constructs used in each language to launch task and data parallel computations, perform synchro-
nization, introduce atomic sections and transfer data in the various memory models are listed. Our main
finding from this analysis is that, to be able to deal with parallel programming, one simply needs to add to a
given sequential IR the ability to specify (1) the parallel execution mechanism of groups of statements, (2)
the synchronization behavior of statements and (3) the layout of data, i.e., how memory is modeled in the
parallel language.

The last line of Table 1 summarizes the approach we propose to map these programming concepts to our
parallel intermediate representation extension. SPIRE is based on the introduction of only ten key notions,
collected in three groups:

– execution, via the sequential and parallel constructs;
– synchronization, via the spawn, barrier, atomic, single, signal and wait constructs;
– data distribution, via send and recv constructs.

Small code snippets are provided below to sketch how the key constructs of these parallel languages can be
encoded in practice within a SPIRE-extended parallel IR.

4.2 Execution

The issue of parallel vs. sequential execution appears when dealing with groups of statements, which in
our case study correspond to members of the forloop, sequence and unstructured sets. To apply
SPIRE to PIPS sequential IR, an execution attribute is added to these sequential set definitions:

forloop’ = forloop x execution;
sequence’ = sequence x execution;
unstructured’ = unstructured x execution;

The primed sets forloop’ (expressing data parallelism) and sequence’ and unstructured’ (im-
plementing control parallelism) represent SPIREd-up sets for the PIPS parallel IR. Of course, the ‘prime’
notation is used here for pedagogical purpose only; in practice, an execution field is added in the existing
IR representation. The definition of execution is straightforward:

execution = sequential:unit + parallel:unit;

where unit denotes a set with one single element; this encodes a simple enumeration of cases for execu-
tion. A parallel execution attribute asks for all loop iterations, sequence statements and control nodes
of unstructured instructions to be run concurrently, using an implicit fork/join metaphor.

For instance, a parallel execution construct can be used to represent data parallelism on GPUs,
when expressed via the OpenCL clEnqueueNDRangeKernel function (see Figure 2). This function
call could be encoded within PIPS parallel IR as a parallel loop, each iteration executing the kernel



Execution Synchronization Memory
Language Parallelism Task Task Point-to- Atomic Model Data

creation join point section distribution
Cilk — spawn sync — cilk lock Shared —

(MIT)
Chapel forall begin — sync sync PGAS (on)
(Cray) coforall atomic (Locales)

cobegin
X10 foreach async finish next atomic PGAS (at)

(IBM) future force (Places)
Habanero- foreach async finish next atomic PGAS (at)
Java (Rice) future get isolated (Places)
OpenMP omp for omp task omp taskwait — omp critical Shared private,

omp sections omp section omp barrier omp atomic shared...
OpenCL EnqueueND- EnqueueTask Finish events atom add, Distributed ReadBuffer

RangeKernel EnqueueBarrier ... WriteBuffer
MPI MPI Init MPI spawn MPI Finalize — — Distributed MPI Send

MPI Barrier MPI Recv...
sequential, Shared,

SPIRE parallel spawn barrier signal, wait atomic Distributed send, recv

Table 1. Mapping of SPIRE to parallel languages constructs (terms in parentheses are not currently handled by SPIRE)

//Execute ’n’ kernels in parallel
global_work_size[0] = n;
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL, 0, NULL, NULL);

Fig. 2: OpenCL example illustrating a parallel loop

function as a separate task, receiving the proper index value as an argument. In this paper, a task is a
statement, to be executed by a thread.

An another example, in the left side of Figure 3, from Chapel, illustrates its forall data parallelism
construct, which will be encoded with a SPIRE parallel loop.

forall I in 1..n do
t[i] = 0;

forloop(I,1,n,1,
t[i] = 0,
parallel)

Fig. 3: forall in Chapel, and its SPIRE core language representation



4.3 Synchronization

The issue of synchronization is a characteristic feature of the run-time behavior of one statement with
respect to other statements. SPIRE extends sequential intermediate representations in a straightforward
way by adding a synchronization attribute to the specification of statements:

statement’ = statement x synchronization;

Coordination by synchronization in parallel programs is often dealt via coding patterns such as barriers,
used for instance when a code fragment contains many phases of parallel execution where each phase should
wait for the precedent ones to proceed. We define the synchronization set via high-level coordination
characteristics useful for optimization purposes:

synchronization = none:unit + spawn:entity + barrier:unit +
single:bool + atomic:reference;

When S is the statement with the synchronization attribute:

– none specifies the default behavior, i.e., independent with respect to other statements, for S;
– spawn induces the creation of an asynchronous task S, while the value of the corresponding entity is

the user-chosen number of the thread that executes S;
– barrier specifies that all the child threads spawned by the execution of S are suspended before

exiting until they are all finished – an OpenCL example illustrating spawn (clEnqueueTask) and
barrier (clEnqueueBarrier) is provided in Figure 4;

mode = OUT_OF_ORDER_EXEC_MODE_ENABLE;
commands = clCreateCommandQueue(context, device_id,mode,&err);
clEnqueueTask(commands, kernel_A, 0, NULL, NULL);
clEnqueueTask(commands, kernel_B, 0, NULL, NULL);
// synchronize so that Kernel C starts only after Kernels A and B have finished
clEnqueueBarrier(commands);
clEnqueueTask(commands, kernel_C, 0, NULL, NULL);

Fig. 4: OpenCL example illustrating spawn and barrier statements

– single ensures that S is executed by only one thread in its thread team (a thread team is the set of all
the threads spawned within the innermost parallel forloop statement) and a barrier exists at the end
of a single operation if its synchronization single value is true;

– atomic predicates the execution of S to the acquisition of a lock to ensure exclusive access; at any
given time, S can be executed by only one thread. Locks are logical memory addresses, represented
here by a member of the PIPS IR reference set (not specified in this paper). An example illustrating
how an atomic synchronization on the reference l in a statement modifying Array x can be translated
in Cilk (via Cilk lock and Cilk unlock) and OpenMP (critical) is provided in Figure 5.



Cilk_lockvar l;
Cilk_lock_init(l);
...
Cilk_lock(l);
x[index[i]] += f(i);

Cilk_unlock(l);

#pragma omp critical
x[index[i]] += f(i);

Fig. 5: Cilk and OpenMP examples illustrating an atomically-synchronized statement

4.4 Event API

In parallel code, one usually distinguishes between two types of synchronization: (1) coarse grain (collec-
tive) synchronization between threads using barriers, which are handled in our SPIRE methodology via
the synchronization patterns defined above, and (2) fine grain (point-to-point) synchronization be-
tween participating threads. Handling point-to-point synchronization using extensions on abstract syntax
tree nodes, as done up to now, is too constraining when one has to deal with a varying set of threads that
may belong to different parallel parent nodes. Thus, SPIRE suggests to deal with this last class of coordi-
nation using a new class of values, of the event type.

SPIRE extends the type set of entities with a new basic type, namely event:

type’ = type + event:unit ;

Values of type event are counters, in a manner reminiscent of semaphores [24]. The programming
interface for events is defined by the following functions:

– event newEvent(int i) is the creation function of events, initialized with the integer i that
specifies how many threads can execute wait on this event without being blocked;

– void signal(event e) increments by one the event value of e. Note that The void return type
will be replaced by int in practice, to enable the handling of error values;

– void wait(event e) blocks the thread that calls it until the value of e is strictly greater than 0.
When the thread is released, this value is decremented by one.

In a first example of possible use of this event API, the construct future used in X10 (see Figure 6)
can be seen as the spawning of the computation of foo(). The end result is obtained via the call to the
force method; such a mechanism can be easily implemented in SPIRE using an event attached to the
running task; it is signaled when the task is completed and waited by the force method.

future<int> Fi = future{foo()};
int i = Fi.force();

Fig. 6: X10 example illustrating a future task and its synchronization

A second example, taken from Habanero-Java, illustrates how point-to-point synchronization primitives
such as phasers and the next statement can be dealt with using the Event API (see Figure 7, left). The
async phased keyword can be replaced by spawn. In this example, the next statement is equivalent
to the following sequence:



signal(ph);
wait(ph);
signal(ph);

where the event ph is supposed initialized to newEvent (-(n-1)); the second signal is used to
resume the suspended tasks in a chain-like fashion.

finish{
phaser ph = new phaser();
for(j = 1;j <= n;j++){
async phased(

ph<SIG_WAIT>){
S;
next;
S′;
}

}
}

barrier(
ph = newEvent(-(n-1));
j = 1;
loop(j <= n,
spawn(j,

S;
signal(ph);
wait(ph);
signal(ph);
S’);

j = j+1))

Fig. 7: A phaser in Habanero-Java, and its SPIRE core language representation

4.5 Data Distribution

The choice of a proper memory model to express parallel programs is an important issue when designing
a generic intermediate representation. There are usually two main approaches to memory modeling: shared
and message passing models. Since SPIRE is designed to extend existing IR for sequential languages, it
can be straightforwardly seen as using a shared memory model when parallel constructs are added. By
convention, we say that spawn creates processes, in the case of message passing memory models, and
threads, in the other case.

In order to take into account the explicit distribution required by the message passing memory model
used in parallel languages such as MPI, SPIRE introduces the send and recv blocking functions for
implementing communication between processes:

– void send(int dest, entity buf) transfers the value in Entity buf to the process num-
bered dest;

– void recv(int source, entity buf) receives in buf the value sent by Process source.

Note that non-blocking communications can be easily implemented in SPIRE using the above primitives
within spawned statements. Also, broadcast collective communications, such as defined in MPI, can be
seen as wrappers around send and recv operations. When the master process and receiver processes want
to perform a broadcast function, then, if this process is the master, its broadcast operation is equivalent to a
loop over receivers, with a call to send as body; otherwise (receiver), the broadcast is a recv function.

The MPI example in Figure 8 can be represented in SPIRE as a sequential loop with index my rank
of size iterations whose body spawns the MPI code from MPI Comm size to MPI Finalize, using



MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (my_rank == 0)

MPI_Recv(sum,sizeof(sum),MPI_FLOAT,1,1,MPI_COMM_WORLD,&stat);
else if(my_rank == 1){

sum = 42;
MPI_Send(sum,sizeof(sum),MPI_FLOAT,0,1,MPI_COMM_WORLD);

}
MPI_Finalize();

Fig. 8: MPI example illustrating a communication

my rank as process number. The communication of Variable sum from Process 1 to Process 0 can be
handled with SPIRE send/recv functions.

An other interesting memory model for parallel programming has been introduced somewhat recently:
the Partitioned Global Address Space [25]. The uses of the PGAS memory model in languages such as
UPC [26], Habanero-Java, X10 and Chapel introduce various notions such as Place or Locale to label
portions of a logically-shared memory that threads may access, in addition to complex APIs for distributing
data over these portions. Given the wide variety of current proposals, we leave the issue of integrating the
PGAS model within the general methodology of SPIRE as future work.

5 SPIRE Operational Semantics

The purpose of the formal definition described in this section is to provide a solid basis for program analy-
ses and transformations. It is a systematic way to specify our IR extension mechanism, something seldom
present in IR definitions. It also illustrates how SPIRE leverages the syntactic and semantic level of sequen-
tial constructs to parallel ones, preserving the sequential traits and, thus, analyses.

Fundamentally, at the syntactic and semantic levels, SPIRE is a methodology for expressing represen-
tation transformers, mapping the definition of a sequential language IR to a parallel version. We define the
operational semantics of SPIRE in a two-step fashion: we introduce (1) a minimal core parallel language
that we use to model fundamental SPIRE concepts and for which we provide a small-step operational se-
mantics and (2) rewriting rules that translate the more complex constructs of SPIRE in this core language.

5.1 Sequential Core Language

Illustrating the transformations induced by SPIRE requires the definition of a sequential IR basis, as was
done above, via PIPS IR. Since we focus here on the fundamentals, we use as core language a simpler,
minimal sequential language, Stmt. Its syntax is given in Figure 9, where we assume that the sets Ide of
identifiers I and Exp of expressions E are given.

Sequential statements are: (1) nop for no operation, (2) I=E for an assignment of E to I, (3) S1;S2 for
a sequence and (4) loop(E,S) for a while loop.

At the semantic level, a statement in Stmt is a very simple memory transformer. A memory m ∈
Memory is a mapping in Ide → V alue, where values v ∈ V alue = N + Bool can either be integers



S ∈ Stmt::=
nop | I=E | S1;S2 | loop(E,S)

S ∈ SPIRE(Stmt)::=
nop | I=E | S1;S2 | loop(E,S) |
spawn(I,S) |
barrier(S) | barrier_wait(n) |
wait(I) | signal(I) |
send(I,I′) | recv(I,I′)

Fig. 9: Stmt and SPIRE(Stmt) syntaxes

n ∈ N or booleans b ∈ Bool. The sequential operational semantics for Stmt, expressed as transition rules
over configurations κ ∈ Configuration = Memory × Stmt, is given in Figure 10; we assume that the
program is syntax- and type-correct. A transition (m,S) → (m′,S’) means that executing the statement
S in a memory m yields a new memory m′ and a new statement S’; we posit that the “→” relation is
transitive. Rules 1 to 5 encode typical sequential small-step operational semantic rules for the sequential
part of the core language. We assume that ζ ∈ Exp → Memory → V alue is the usual function for
expression evaluation.

v = ζ(E)m

(m,I = E)→ (m[I→ v],nop)
(1)

(m,nop;S)→ (m,S) (2)

(m,S1)→ (m′,S′
1)

(m,S1;S2)→ (m′,S′
1;S2)

(3)

ζ(E)m

(m,loop(E,S))→ (m,S;loop(E,S))
(4)

¬ζ(E)m
(m,loop(E,S))→ (m,nop)

(5)

Fig. 10: Stmt sequential transition rules

The semantics of a whole sequential program S is defined as the memory m such that (⊥,S) →
(m,nop), if the execution of S terminates.

5.2 SPIRE as a Language Transformer

Syntax At the syntactic level, SPIRE specifies how a grammar for a sequential language such as Stmt
is transformed, i.e., extended, with synchronized parallel statements. The grammar of SPIRE(Stmt) in



Figure 9 adds to the sequential statements of Stmt (from now on, synchronized using the default none)
new parallel statements: a task creation spawn, a termination barrier and two wait and signal
operations on events or send and recv operations for communication. Synchronizations single and
atomic are defined via rewriting (see Subsection 5.3). The statement barrier wait(n), added here
for specifying the multiple-step behavior of the barrier statement in the semantics, is not accessible to
the programmer. Figure 7 provides the SPIRE representation of a program example.

Semantic domains As SPIRE extends grammars, it also extends semantics. The set of values manip-
ulated by SPIRE(Stmt) statements extends the sequential V alue domain with events e ∈ Event = N ,
that encode events current values; we posit that ζ(newEvent(E))m = ζ(E)m.

Parallelism is managed in SPIRE via processes (or threads). We introduce control state functions π ∈
State = Proc→ Configuration×Procs to keep track of the whole computation, mapping each process
i ∈ Proc = N to its current configuration (i.e., the statement it executes and its own view of memory) and
the set c ∈ Procs = ℘(Proc) of the process children it has spawned during its execution.

In the following, we note dom(π) = {i ∈ Proc/π(i) is defined} the set of currently running processes,
and π[i → (κ, c)] the state π extended at i with (κ, c). A process is said to be finished if and only if all its
children processes, in c, are also finished, i.e., when only nop is left to execute: finished(π, c) = (∀i ∈
c,∃ci ∈ Procs,∃mi ∈Memory/π(i) = ((mi,nop), ci) ∧ finished(π, ci)).

Memory Models The memory model of sequential languages is a unique address space for identifier
values. In our parallel extension, a configuration for a given process or thread includes its view of memory.
We suggest to use the same semantic rules, detailed below, to deal with both shared and message passing
memory rules. The distinction between these models, beside the additional use of send/receive constructs in
the message passing model versus events in the shared one, is included in SPIRE via constraints we impose
on the control states π used in computations. Namely, we posit that, in the shared memory model, for all
threads i and i′ with π(i) = ((m,S), c) and π(i′) = ((m′,S’), c′), one has m = m′. No such constraint
is needed for the message passing model. Regarding the notion of memory equality, note that the issue of
private variables in threads would have to be introduced in full-fledged languages. As mentioned above,
PGAS is left for future work; some sort of constraints based on the characteristics of the address space
partitioning for places/locales would have to be introduced.

Semantic Rules At the semantic level, SPIRE is thus a transition system transformer, mapping rules
such as the ones in Figure 10 to parallel, synchronized transition rules in Figure 11. A transition (π[i →
((m,S), c)]) ↪→ (π′[i → ((m′,S’), c′)]) means that the i-th process, when executing S in a memory m,
yields a new memory m′ and a new control state π′[i → ((m′,S’), c′)] in which this process now will
execute S′; additional children processes may have been created in c′ compared to c. We posit that the “↪→”
relation is transitive.

Rule 6 is a key rule to specify SPIRE transformer behavior, providing a bridge between the sequen-
tial and the SPIRE-extended parallel semantics; all processes can non-deterministically proceed along their
sequential semantics “→”, leading to valid evaluation steps along the parallel semantics “↪→”. The inter-
leaving between parallel processes in SPIRE(Stmt) is a consequence of (1) the non-deterministic choice
of the value of i within dom(π) when selecting the transition to perform and (2) the number of steps ex-
ecuted by the sequential semantics. Note that one might want to add even more non-determinism in our
semantics; indeed, Rule 1 is atomic: loading the variables in E and performing the store operation to I are
performed in one sequential step. To simplify this presentation, we do not provide the simple intermediate
steps in the sequential evaluation semantics of Rule 1 that would have removed this artificial atomicity.

The remaining rules focus on parallel evaluation. In Rule 7, spawn adds to the state a new process n that
executes Swhile inheriting the parent memorym in a fork-like manner; the set of processes spawned by n is



initially equal to φ, and n is added to the set of processes c spawned by i. Rule 8 implements a rendezvous:
a new process n executes S, while process i is suspended as long as finished is not true; indeed, the rule 9
resumes execution of process i when all the child processes spawned by n have finished. In Rules 10 and
11, I is an event, that is a counting variable used to control access to a resource or to perform a point-to-
point synchronization, initialized via newEvent to a value equal to the number of processes that will be
granted access to it. Its current value n is decremented every time a wait(I) statement is executed and,
when π(I) = n with n > 0, the resource can be used or the barrier can be crossed. In Rule 11, the current
value n′ of I is incremented; this is a non-blocking operation. In Rule 12, p and p′ are two processes that
communicate: p sends the datum I to p′, while this later consumes it in I’.

κ→ κ′

π[i→ (κ, c)] ↪→ π[i→ (κ′, c)]
(6)

n = ζ(I)m

π[i→ ((m,spawn(I,S)), c)] ↪→ π[i→ ((m,nop), c ∪ {n})][n→ ((m,S), ∅)] (7)

n 6∈ dom(π) ∪ {i}
π[i→ ((m,barrier(S)), c)] ↪→ π[i→ (m,barrier wait(n)), c)][n→ ((m,S), ∅)] (8)

finished(π, {n}) ∧ π(n) = ((m′,nop), c′)

π[i→ ((m,barrier wait(n)), c)] ↪→ π[i→ ((m′,nop), c)]
(9)

(n = ζ(I)m) ∧ (n > 0)

π[i→ ((m,wait(I)), c)] ↪→ π[i→ ((m[I→ n− 1],nop), c)]
(10)

n = ζ(I)m

π[i→ ((m,signal(I)), c)]) ↪→ π[i→ ((m[I→ n+ 1],nop), c)]
(11)

p′ = ζ(P’)m ∧ p = ζ(P)m′

π[p→ ((m,send(P’,I)), c)][p′ → ((m′,recv(P,I’)), c′)] ↪→ (12)

π[p→ ((m,nop), c)][p′ → ((m′[I’→ m(I)],nop), c′)]

Fig. 11: SPIRE(Stmt) synchronized transition rules

The semantics of a whole parallel program S is defined as the set of memories m such that ⊥[0 →
((⊥,S), {})] ↪→ π[0→ ((m,nop), c)], if S terminates.

5.3 Rewriting Rules

The SPIRE concepts not dealt with in the previous section are defined via their rewriting into the core
language. This is the case for both the treatment of the execution attribute and the remaining coarse-
grain synchronization constructs.



Execution. A parallel sequence of statements S1 and S2 is a pair of independent substatements
executed simultaneously by spawned processes I1 and I2 respectively, i.e., is equivalent to:

barrier(spawn(I1,S1);spawn(I2,S2))

A parallel forloop (see Figure 3) with index I, lower expression low, upper expression up, step
expression step and body S is equivalent to:

I=low;loop(I<=up,spawn(I,S);I=I+step)

A parallel unstructured is rewritten as follows. All control nodes present in the transitive closure of
the successor relation are rewritten in the same manner. Each control node C is characterized by a statement
S, predecessor list ps and successor list ss. For each edge (c,C), where c is a predecessor of C in ps, an
event Ic,C initialized at newEvent(0) is created, and similarly for ss. The whole unstructured construct
is replaced by a sequential sequence of spawn(I,Sc), one for each C of the transitive closure of the
successor relation starting at the entry control node, where Sc is defined as follows:

barrier(spawn(1,wait(Ips[1],C));...;spawn(m,wait(Ips[m],C)));
S;
signal(IC,ss[1]);...;signal(IC,ss[m’])

where m and m’ are the length of the ps and ss lists; L[I] is the I-th element of L.
Synchronization. A statement S with synchronization atomic(I) is rewritten as:

wait(I);S;signal(I)

assuming that the assignment I = newEvent(1) is performed on the event identifier I at the very
beginning of the whole program. A wait on an event variable sets it to zero if it is currently equal to one
to prohibit other threads to enter the atomic section; the signal resets the event variable to one to permit
further access.

A statement S with a blocking synchronization single, i.e., equal to true, is equivalent, when it
occurs within an enclosing innermost parallel forloop, to:

barrier(wait(I_S);
if(first_S,

S; first_S = false,
nop);

signal(I_S))

where first S is a boolean variable that ensures that only one process among those spawned by the
parallel loop will execute S; access to this variable is protected by the event I S. Both first S and I S
are respectively initialized before loop entry to true and newEvent(1). The conditional if(E,S,S’)
can easily be rewritten using the core loop construct. The same rewriting can be used when the single
synchronization is equal to false, corresponding to a non-blocking synchronization construct, except that
no barrier is needed.

6 Validation

Assessing the quality of a methodology that impacts the definition of a data structure as central for compi-
lation frameworks as an intermediate representation is a difficult task. This section provides two possible



ways to perform such an assessment on SPIRE: (1) we illustrate how it can be used on a different IR, namely
LLVM, with minimal changes, thus providing support regarding the generality of our methodology, and (2)
we provide information regarding its impact on run-time performance data for parallelization.

6.1 SPIRE Application to LLVM IR

This section shows how simple it is to upgrade the LLVM IR to a “parallel LLVM IR” via SPIRE transfor-
mation methodology.

LLVM [13] (Low-Level Virtual Machine) is an open source compilation framework that uses an inter-
mediate representation in Static Single Assignment (SSA) [27] form. We chose the IR of LLVM to illustrate
a second time our approach since LLVM has been widely used in both academia and industry; another in-
teresting feature of LLVM IR, compared to PIPS’s, is that it sports a graph approach, while PIPS is abstract
syntax tree-based; each function is structured in LLVM as a control flow graph (CFG).

Figure 12 provides the definition of a significant subset of the sequential LLVM IR described in [13] (to
keep notations simple in this paper, we use the same Newgen language to write this specification):

– a function is a list of basic blocks, which are portions of code with one entry and one exit points;
– a basic block has an entry label, a list of φ nodes and a list of instructions, and ends with a terminator

instruction;
– φ nodes, which are the key elements of SSA, are used to merge the values coming from multiple basic

blocks. A φ node is an assignment (represented here as a call expression) that takes as arguments an
identifier and a list of pairs (value, label); it assigns to the identifier the value corresponding to the label
of the block preceding the current one at run time;

– every basic block ends with a terminator which is a control flow-altering instruction that specifies which
block to execute after termination of the current one.

function = blocks:block*;
block = label:entity x phi_nodes:phi_node* x

instructions:instruction* x terminator;
phi_node = call;
instruction = call;
terminator = conditional_branch + unconditional_branch + return;
conditional_branch = value:entity x label_true:entity x label_false:entity;
unconditional_branch = label:entity;
return = value:entity;

Fig. 12: Simplified Newgen definitions of the LLVM IR

Applying SPIRE to LLVM IR is, as illustrated above with PIPS, achieved in three steps, yielding the
SPIREd parallel extension of the LLVM sequential IR provided in Figure 13:

– an execution attribute is added to function and block: a parallel basic block sees all its instruc-
tions launched in parallel (in a fork/join manner), while all the blocks of a parallel function are seen as
parallel tasks to be executed concurrently;



– a synchronization attribute is added to instruction; therefore, an instruction can be anno-
tated with spawn, barrier, single or atomic synchronization attributes. When one wants to
deal with a sequence of instructions, this sequence is first outlined in a function, to be called instead;
this new call instruction is then annotated by the proper synchronization attribute, such as spawn, if
the sequence must be considered as an asynchronous task. A similar technique is used for the other
synchronization constructs barrier, single and atomic;

– as LLVM provides a set of intrinsic functions [13], SPIRE functions newEvent, signal and wait
for handling point-to-point synchronization, and send and recv for handling data distribution, are
added to this set.

function′ = function x execution;
block′ = block x execution;
instruction′ = instruction x synchronization;

Fig. 13: SPIRE (LLVM IR)

Note that the use of SPIRE on the LLVM IR is not able to express parallel loops as easily as was
the case on PIPS IR. Indeed, the notion of a loop does not always exist in the definition of intermediate
representations based on control flow graphs, including LLVM; it is an attribute of some of its nodes, which
has to be added later on by a loop-detection program analysis phase. Of course, such analysis could also be
applied on the SPIRE-derived IR, and thus recover this information. Once one knows that a particular loop
is parallel, this can be encoded within SPIRE using the same technique as presented in Section 5.3.

More generally, even though SPIRE uses traditional parallel paradigms for code generation purposes,
SPIRE-derived IRs are able to deal with more specific parallel constructs such as DOACROSS or HELIX-
like approaches. Basically, a compiler would parse a given sequential program into sequential IR elements.
Optimization compilation phases specific to particular parallel code generation paradigms such as those
above will translate, whenever possible (specific data and control-flow analyses will be needed here), these
sequential IR constructs into parallel loops, with the corresponding synchronization primitives, as need be.
Code generation will then recognize such IR patterns and generate specific parallel instructions such as
DOACROSS.

6.2 Performance

We have used the SPIRE methodology to design a parallel IR for the PIPS infrastructure, and upgraded
the PIPS implementation so that it can handle the resulting additional constructs, except for events, since
our automatic parallelization algorithms do not require point-to-point synchronization for the moment. We
have used this new version of PIPS for the implementation of a new task parallelization algorithm [28]. It
automatically generates both OpenMP and MPI code from the same parallel IR.

We gathered performance measures related to SPIRE-based parallelization on four well-known C sci-
entific applications, targeting both shared and distributed memory architectures: the image and signal pro-
cessing applications Harris [29] and ABF [30], the SPEC2001 benchmark equake [31] and the NAS parallel
benchmark IS [32]. Table 2 provides, for each application (Harris, ABF, equake and IS) and execution envi-
ronment (OpenMP and MPI), the speedup obtained for runs of their SPIRE (PIPS)-coded parallel versions.



The execution times have been measured on two host Linux machines: (1) one with a 2-socket AMD quad-
core Opteron with 8 cores and 16 GB of RAM, running at 2.4 GHz (when targeting OpenMP), and (2)
another with 6 bicore processors Intel Xeon and 32 Gb of RAM per processor, running at 2.5 GHz (for MPI
programs). The other details of this experimental protocol are provided in [28].

This set of experimental data suggests that the SPIRE methodology is able to provide parallel IRs that
encode a significant amount of parallelism, and is thus well adapted to the design of parallel target formats
for the efficient parallelization of scientific applications on both shared and distributed memory systems.

Application Language # of threads (OpenMP) Speedup
or processes (MPI)

Harris
OpenMP 3 2.21

MPI 3 1.7

ABF
OpenMP 8 4.4

MPI 6 2.8

equake
OpenMP 8 5.02

MPI 6 3.05

IS
OpenMP 8 3.12

MPI 6 2.86
Table 2. OpenMP/MPI vs. sequential speedup (Harris, ABF, equake and IS)

7 Conclusion

SPIRE is a new and general 3-step extension methodology for mapping any intermediate representation
(IR) used in compilation platforms for representing sequential programming constructs to a parallel IR; one
can leverage it for the source-to-source and high- to mid-level optimization of control-parallel languages
and constructs.

The extension of an existing IR introduces (1) a parallel execution attribute for each group of statements,
(2) a high-level synchronization attribute on each statement node and an API for low-level synchronization
events and (3) two built-ins for implementing communications in message passing memory systems. The
formal semantics of SPIRE transformational definitions is specified using a two-tiered approach: a small-
step operational semantics for its base parallel concepts and a rewriting mechanism for high-level constructs.

The SPIRE methodology is presented via a use case, the intermediate representation of PIPS, a powerful
source-to-source compilation infrastructure for Fortran and C. We illustrate the generality of our approach
by showing how SPIRE can be used to represent the constructs of the current parallel languages Cilk,
Chapel, X10, Habanero-Java, OpenMP, OpenCL and MPI. We provide experimental elements to validate
SPIRE: (1) the application of SPIRE on another IR, namely the one of the widely-used LLVM compila-
tion infrastructure, and (2) performance data, gathered using our implementation of SPIRE on PIPS IR,
to illustrate the ability of the resulting parallel IR to efficiently express parallelism present in scientific
applications.

Future work will address the representation via SPIRE of the PGAS memory model and of more pro-
gramming features such as exceptions.
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