
An Enhanced IFC Label Model to meet
Application Policy Requirements.

Thomas F. J.-M. Pasquier1, Olivier Hermant2, Jean Bacon1

1 University of Cambridge, United Kingdom, firstname.lastname@cl.cam.ac.uk
2 MINES ParisTech, France, hermant@cri.ensmp.fr

Abstract. In recent projects we have investigated the use of Informa-
tion Flow Control (IFC) for distributed and cloud computing. As re-
ported elsewhere, we designed and implemented an Operating System
(OS) kernel-loadable module for Linux (FlowK) to enforce IFC, and en-
hanced our SBUS middleware to be IFC-compliant (SBUS-IFC). FlowK’s
label model follows established practice for IFC in languages and OS, but
unlike others and with cloud deployment in mind, FlowK’s implementa-
tion aims to minimise the reengineering necessary in order to use IFC.
We present the original FlowK model, then discuss difficulties we found
in expressing and enforcing policies for certain applications, making the
use of IFC impracticable for them. We then present a novel, enhanced
label model (FlowK2) which subsumes that of FlowK. FlowK2 enables
more concise and accurate expression of policy, according to the Principle
of Least Privilege (PoLP). We have implemented FlowK2 and have car-
ried out a comparative evaluation, showing similar overhead to current
IFC implementations.
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1 Introduction

Our recent projects have investigated the use of Information Flow Control (IFC)
for distributed and cloud computing; for an overview see [1]. Concern about
data leakage is holding back more widespread adoption of cloud computing by
companies and public institutions alike. There is an increasing volume of legis-
lation [15], but ensuring and demonstrating compliance with the legislation by
cloud service providers and third parties is problematic. We believe that the
deployment of IFC to augment traditional authentication and authorisation will
make a substantial contribution to the security of distributed and cloud sys-
tems, both through enforcement mechanisms and demonstration of compliance
through audit.

We designed and implemented an Operating System (OS) loadable kernel
module FlowK [17] for Linux to enforce IFC. Note that we use the term IFC
throughout to subsume Decentralised/Distributed IFC (DIFC) (see §2). FlowK’s
label model follows established practice for languages and OS (see §2), but un-
like other implementations, and with cloud deployment in mind, we aimed to
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minimise the reengineering necessary in order to use IFC. The design of FlowK
follows the principle of policy-mechanism separation; the FlowK kernel module
is concerned only with enforcing rules relating to entities’ labels. Also, the Prin-
ciple of Least Privilege (PoLP) should underly both application-level policy and
IFC, as discussed in [2] and further in this paper.

Traditionally, access control is applied before data can be accessed by an
entity, after which no further control is exercised on where that data flows in
the system. IFC augments access control so that data flows are monitored con-
tinuously to enforce policy. This is achieved by associating labels with data and
the entities that process them. Labels comprise a number of tags that describe
the nature and/or source of the data such as healthcare, personal, government-
information etc. Flows are permitted only if the labels match, as defined in §3.
The challenge in integrating access control policy with IFC is to create labels
that express policy accurately, concisely, naturally and efficiently, and in a way
that makes policy changes easy to implement.

We have previously investigated how labels can be used to enforce certain
laws and regulations, such as “data originating in the EU must not leave its
boundaries, except to certain safe havens” [15]. A simple tag EU can be used
for this purpose. We found access control policies to have more richness and
complexity, and difficulties arise in representing some policies via IFC labels.
Essentially, problems arise when some software can access all data items of a
certain kind, for example to generate statistics, anonymise or encrypt, and other
software is restricted to access only one such item. In work on Role-Based Access
Control (RBAC), by ourselves [3] and others, parametrised roles were used in
these circumstances to avoid proliferation of the number of required roles when
following the PoLP.

In the work described here we have evaluated the original FlowK label model,
which has equivalent expressiveness to other IFC models, from the perspective
of carrying through application-level policy to runtime. We believe that some
modifications are needed to improve the expressiveness of tags and to express
correctly the trust that should be placed in entities that need to access a wide
range of data, such as when generating aggregates of particular kinds of data. We
propose two-component tags to represent the concern of data and a specifier for
an item of that kind, for example 〈medical, bob〉 for Bob’s medical record, and
have implemented this in FlowK2. Such labels more closely reflect the policy
maker’s intent than previous models, and current single-component tags can
easily be expressed in this way, such as 〈location,EU〉.

The first original contribution of this paper is the modification of standard
IFC tag to allow better expression of policy §5. A second contribution of this
paper is the ability to express conflict of interest for the first time in IFC imple-
mented at the OS level §3.4 and §5.3.

§2 outlines IFC models and implementations and application level policy
expression. §3 presents our original FlowK model. §4 gives some motivating
examples underlying the design of FlowK2, showing how two-component tags
solve certain problems. §5 presents the FlowK2 label model, extending that of
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FlowK. In §6 we show that the modifications can easily be made and do not
affect performance noticeably. §7 concludes the paper.

2 Related Work

This work is concerned with implementing authorisation policy in IFC via an
OS-level mechanism. We first give an overview of IFC models. Since FlowK is an
importable Linux kernel module, we then outline implementations of IFC within
OS as components of distributed systems. We are not aware of any implemen-
tations of IFC in cloud computing environments.

We have found simple policies, for example on the permitted location of data,
straightforward to express and enforce using the ubiquitous atomic tag model.
We therefore focus on more complex and rich authorisation policy, in particular
Role Based Access Control (RBAC), in which the most detailed application-level
policy has been expressed.

2.1 IFC Models

It has long been argued that standard security techniques, such as firewalls and
access control mechanisms, are not enough to prevent information leakage [8].
Indeed, it is beyond the scope of such mechanisms to determine whether, after
the controls they impose, the information is used correctly. For example it is
difficult to determine if the confidentiality of decrypted data is respected [19].
We therefore need to protect information flow end-to-end, in particular when
information is transmitted within and between applications.

In 1976, Denning [8] proposed a Mandatory Access Control (MAC) model to
track and enforce rules on information flow in computer systems. In this model,
entities are associated with security classes. The flow of information from an
entity a to an entity b is allowed only if the security class of b (denoted b) is
equal to or higher than a. This allows the no-read up, no-write down principle
of Bell and LaPadula [4] to be implemented to enforce secrecy. By this means a
traditional military classification public, secret, top secret can be implemented.
A second security class can be associated with each entity to track and enforce
integrity (quality of data) during the permitted reading down and writing up, as
proposed by Biba [5]. A current example might distinguish information from a
government website in the .gov.uk domain from that from “Joe’s Blog”. Using
this model we are able to control and monitor information flow to ensure data
secrecy and integrity.

In 1997 Myers [16] introduced a decentralised IFC model (DIFC) that has
inspired most later work. This model was designed to meet the changing needs
of systems from global, static, hierarchical security levels to a more fluid system,
able to capture the needs of different applications. In this model each entity
is associated with two labels: a secrecy label and an integrity label, to capture
respectively the privacy/confidentiality of the data and the reliability of a source
of data. Each label comprises a set of tags, each of which represents some security
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concern. Data are allowed to flow if the security label of the sender is a subset
of the label of the receiver, and conversely for integrity. We describe in §3 the
model we use in FlowK that derives from this general idea.

2.2 IFC in Operating Systems and Distributed Systems

Other research projects have implemented IFC constraints at the OS level, most
notably in Flume [13]. Here, a model similar to Myers’ original one [16] is used,
and the entities considered are files, pipes, sockets and processes. In Flume,
monitored (labelled) processes have access to a restricted set of system calls,
and some (such as fork and pipe) are completely replaced by IFC-specific ones.
This means that Flume applications running under IFC constraints need to be
rewritten, even when they do not need to manipulate IFC labels during their
life-cycles.

The Asbestos OS [10] implements the send and receive label paradigm, while
also proposing a solution to improve the performance of IFC, which relies heavily
on the fork operation to build applications. Asbestos is a rewritten OS rather
than an imported module, requiring substantial changes in software that uses
it. HiStar [25] extended Asbestos with security enhancements and a user-space
library to emulate a Unix-like OS interface.

In Aeolus [7] and Laminar [18], an IFC aware operating system is used to en-
force inter-process IFC constraints and a modified Java Virtual Machine ensures
intra-process isolation via programming language objects. Again, it is necessary
for application developers to be IFC-aware and to rewrite their Java programs.

DStar [26] enables IFC in distributed systems by leveraging the labelling
mechanisms of IFC-compliant OS such as Flume and HiStar. DStar defines
globally meaningful labels and each OS provides an exporter that maintains
the correspondence between local representations and global labels, prroviding
inter-process communication as message-passing. We have made a general mid-
dleware IFC-compliant (SBUS-IFC) [24], and are in the process of integrating it
with FlowK2.

2.3 Role Based Access Control

RBAC is a mature, widely used access control scheme with a large literature and
existing standards [11, 21].3 Role definitions in RBAC tend to be functional in
their scope, being application- or organisation-specific. Administrative roles are
also included to capture the need to manage RBAC itself.

In work on RBAC by ourselves [3] and others [12, 14], parametrised roles
were found to provide elegant expression of policy and avoid role explosion.
For example, certain company software such as “Payroll” may need to access all
employees’ data whereas each employee can access only their own data record. To
achieve this, a company either creates a role per employee e.g. employee smith or
parametrises a single role, for example employee(smith) etc. The Payroll software

3 http://csrc.nist.gov/groups/SNS/rbac/

http://csrc.nist.gov/groups/SNS/rbac/
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can then access employee(*), where * indicates all employees. In this paper we
argue that the IFC label model needs similar refinement in order to carry forward
to runtime such aspects of application policy, thus following the PoLP.

Role parametrisation allows for relationships between parameters and for ex-
clusions to be checked. For example the role treating doctor(doctorID, patientID)
allows the role to express the dynamic set of patients for each doctor for control-
ling access to records. An exclusion is expressed as a rule on a parameter value
to indicate, for example, “all doctors can access my records except doctorID”,
see [3]. In §4 we show that such checks are most appropriately carried out at
the authorisation point within the application, as are environmental checks such
as “A Pharmacist can only authorise the issuing of drugs while on duty in the
Pharmacy”.

3 The FlowK Model

IFC augments authorisation by enforcing dynamically, end-to-end, that only
permitted flows of information can take place. In this section we present our
model for FlowK; please see [17] for further details and examples.

3.1 Enforcing Safe Flows via Labels

A tag within a label’s set of tags represents a particular security concern for a
category of data. In our IFC model two labels are associated with every entity
A: a secrecy label S(A) and an integrity label I(A). The current state of these
two labels (sets of tags) is the security context of an entity.

We now look at a flow of information from an entity A to an entity B, denoted
A→ B. A flow is allowed if the following rules are respected:

A→ B, iff

{
S(A) - S(B)

I(B) - I(A)
(1)

where, in FlowK, the preorder - denotes mere inclusion ⊆ (it will be refined for
FlowK2).

Consider the read and write functions of the Bell-LaPadula model [4] and the
Biba model [5]. In the IFC world read is the equivalent of an incoming flow and
write is the equivalent of an outgoing flow. In rule (1), the subrule concerning
secrecy labels ensures that an entity only passes information to an entity that
is allowed to receive it, thus enforcing the “no read up, no write down” policy
of the Bell-LaPadula model. The subrule concerning integrity labels enforces
quality of data during the permitted reading down and writing up, as proposed
by Biba [5]. It is therefore possible to represent traditional security requirements
as IFC constraints, although we use labels to represent more general security
contexts.



6 Thomas Pasquier, Olivier Hermant and Jean Bacon

When the information needs to flow in both directions the combination of -
and % becomes an equivalence condition ∼, that for FlowK is equality:

A↔ B, iff

{
S(A) ∼ S(B)

I(A) ∼ I(B)
(2)

3.2 Creation of an Entity

We define A ⇒ B as the operation of the entity A creating the entity B. An
example is creating a process in a Unix-style OS by fork. We have the following
rules for creation:

if A⇒ B, then

{
S(B) := S(A)

I(B) := I(A)
(3)

That is, the created entity inherits the labels of its creator.

3.3 Privileges for Managing Tags and Labels

Certain active entities (processes) have privileges that allow them to modify
their labels. This is needed to support application management, see §3.5, and
for declassification as described below. An entity has two sets of privileges for
removing tags from its secrecy and integity labels (P−S for S and P−I for I), and
two sets for adding tags to these labels (P+

S for S and P+
I for I). That is, for an

entity A to remove the tag ts ∈ S(A), it is necessary that ts ∈ P−S (A), similarly
to add the tag ti to the label I(A) it is necessary that ti ∈ P+

I (A).
For an entity A, a label X(A) and a tag t, a change of the label is authorised

if the following rule is respected:

X(A) := X(A) ∪ {t} if t ∈ P+
X (A) OR X(A) := X(A) \ {t} if t ∈ P−X (A) (4)

For example, in order to receive information from an entity B, an entity A
will need to set its labels (if it has the privilege) such that the flow constraints
expressed by the tags associated with B are respected, that is such that the flow
B → A respects the subrules in rule (1). We propose the following notation: for
a process and its labels (A,S, I) (A,S′, I ′) is the modification of the process
labels following rule 4.

Declassification. An important example of changing security context is de-
classification. For example, plain-text data may have a secret tag whereas the
same data when encrypted may flow more freely. A process that encrypts data
must be trusted to have the privilege to declassify the derived encrypted data
that is, to create encrypted data without the secret tag in its S label. In outline:
the encrypting process starts off with the secret tag in S, reads the file with tag
secret in its S, encrypts the data, changes its security context by removing the
secret tag from S (for which it has the privilege) then writes the encrypted data,
for example as public data.
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Creation and Privileges. On creation, labels are automatically inherited by a
created entity from its creator (per rule 3), but privileges are not. If the child is
to be given privileges over its labels, they must be passed explicitly. We denote
the flow generated by an entity A giving selected privileges t±X to an entity B

as A
t±X
↪→ B (for example allowing t to be removed from S, would be denoted

A
t−S
↪→ B). In order for a process to delegate a privilege to another process it must

own this privilege itself. That is,

A
t±X
↪→ B only if t ∈ P±X (A) (5)

3.4 Separation of Duty and Conflict-of-Interest Groups

A policy maker may need to specify a separation of duty (SoD) or conflict-of-
interest (CoI) between principals and/or roles [6,20]. An example of SoD is that
an auditor may not audit their own actions. A CoI may arise when a principal
could give professional advice to a number of competing companies. Separation
of data access may be enforced by a Chinese Wall policy [6].

We believe CoI support in IFC is unique to FlowK. We define a set C of tags
that represents some specified conflicting interests. In order for the configuration
of an entity A to be valid with respect to C, rule (6) must be respected:

∀C,
∣∣∣(S(A) ∪ I(A) ∪ P+

S (A) ∪ P+
I (A) ∪ P−S (A) ∪ P−I (A)

)
∩ C

∣∣∣ ≤ 1 (6)

That is, an entity is non-conflicting in this context if the set of its potential
tags (past, present and future) contains at most one element from the set of tags
within the related CoI group. In detail, by potential tags we mean the tags in
its current S and I labels and those tags that it has the privilege to add to S(A)
(i.e. P+

S (A)) and to I(A) (i.e. P+
I (A)) or that it may have removed from S(A)

(i.e. P−S (A)) and from I(A) (i.e. P−I (A)). CoI rules should be checked every time
a privilege is granted.

Suppose a conflict C = {Fiat, Ford,Audi, ...} and some data is labelled
FiatData[S = {Fiat}, I = ∅] and FordData[S = {Ford}, I = ∅]. The CoI
described ensures that it is not possible for a single entity (e.g. a process) to have
access to both FordData and FiatData either simultaneously or sequentially,
i.e. enforcing that FordData and FiatData are processed separately.

3.5 Application Startup

So far we have seen how active entities exchange information, create new entities,
change their security context and delegate their privileges. We have not yet seen
how tags and privileges are set up for the application instances.

We define a trusted entity to manage an application, denoted A∗ for a trusted
entity A. Such an A∗ has, at startup, access to all the tags required for a given
application and all the privileges to manage them. It spawns all application
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instances, with appropriate security contexts, and sets up any CoI groups needed
by the application. Note that A∗ is the only entity entitled to create CoI groups
for the tags it manages.

In our current implementation such trusted processes are configured at startup
with the tags for the application’s naming domain. Work is in progress on inte-
grating FlowK with an IFC-aware middleware SBUS-IFC [22, 23], a function of
which is to transfer tags as well as data.

In the example in 3.4, the application manager CarManager∗ is set up with
the privileges to add and subtract all the tags in the naming domains for S and
I labels for the application. For simplicity, consider I = ∅ for this application.
Suppose the naming domain for S comprises the tags {Fiat, Ford,Audi, ...}.
CarManager∗ creates a conflict of interest C = {Fiat, Ford,Audi, ...} and then
creates the processes to manipulate information for each car type.

4 Motivating Use Cases

In this section we motivate the use of two-component tags in FlowK2’s label
model. Our model is designed for a distributed system or cloud platform where
there is likely to be a large amount of user data stored with persistent labels
in files, databases, key-value stores etc. In a company context, data records
may relate to individual employees; in a public health context, data may be
the medical records of patients; in an educational context, data may relate to
students, staff etc. Specifying and enforcing access to all, some specified subgroup
or only one data record of a given type is a universal requirement, discussed in
the literature on policy.

Suppose a principal is allowed access to a subset of records, e.g. doctors may
be able to access only the records of the patients they are currently treating.
Temporally separated instantiations of the application are likely, i.e. to one pa-
tient’s records at a time. Each time, current authorisation policy is enforced and
is translated into labels to ensure correct behaviour at runtime. Note that as a
doctor’s group of patients under treatment changes, a lookup of current patients
at the authorisation point in the application will ensure that labels are created
only for current patients, selected at runtime from the entire database.

The first two use cases arise from the need of certain software to perform
computations on all records of a given type, whereas other software is authorised
only to access records on behalf of a single individual. The third considers a
system log containing records from all running applications relating to large
numbers of principals. These problems are akin to the role proliferation that
motivated role parametrisation in RBAC, as mentioned in §2.

We have solved these problems by making our tags more expressive to reflect
the intended policy more accurately. Also, this new tag structure correctly rep-
resents the trust that should be placed in certain entities, according to PoLP. We
use two-component tags, where a tag is of the form 〈concern, specifier〉. We use
〈concern, ∗〉 to indicate all tags of the specified concern and 〈∗, specifier〉 for
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tags of all concerns with the given specifier. 〈∗, ∗〉 then indicates all tags in some
naming domain. In §5 we present this label model for FlowK2 more formally.

4.1 Data Analysis

In the healthcare domain, statistical analysis of the medical records of patients
is needed for various purposes including public health, environmental concerns,
clinical practice etc. We are concerned with the privacy and confidentiality of
medical data and will therefore discuss the construction of the IFC secrecy label
for a statistical analysis program.

In the current FlowK model a tag represents a single security concern. To
express the idea of Bob’s medical data, we would use two tags bob data and
medical data. The entity carrying out the statistical analysis of the medical
data would then need to have not only the medical data tag, but also a tag
corresponding to every patient’s data, for rule (1) to be satisfied. This makes
the use of IFC infeasible for such purposes: (1) The performance implications
are significant. We have shown [17] that the processing overhead induced by
the number of tags in labels is not insignificant (especially at this scale). (2)
Enumerating all tags would be prone to error as the database state changes,
with records being added and removed. (3) This entity would be over-privileged
by the PoLP, being able to receive any data labelled only with the tag bob data
although our intention was for it only to be concerned with medical data. It
would also be privileged to declassify, see §3.3, over all the patients’ personal tags
and trusted not to leak information about any patient. An alternative would be
to define different tags for every category of user data such as bob medical data,
bob tax data, bob home data and many more. The performance issues caused
by huge numbers of tags would still hold. Also, an entity running on behalf of
Bob could not simply have a label with a single tag bob data but would have to
enumerate all the particular types of Bob’s data it could process.

The problems are solved by using two-component tags, where a tag is of the
form 〈concern, specifier〉. Each record has an S label containing a tag such as
〈medical, patientID〉 and we express that an entity can access all medical data
by including the tag 〈medical, ∗〉 in its S label, where ∗ indicates all records of
concern medical. An entity E doing statistical analysis could be labelled E = [S :
{〈medical, ∗〉, 〈medical, statistics〉}, I : {}] and would need to declassify over all
patients to create useable output labelled [S : {〈medical, statistics〉}, I : {}]. We
show in §5 how declassification is represented in FlowK2’s label model.

4.2 Log Audit

Consider a system log which several active entities are able to access. A process
concerned with digital forensics requires access to the whole log to detect and
investigate suspicious patterns of behaviour; applications, e.g. cloud tenants, and
individual users should be able to audit the use of their own data.

With the current model an entity performing audit over all log records would
need access to all relevant concerns and specifiers: in FlowK2’s model 〈∗, ∗〉. It
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would need declassification privileges over all those data for the audit result to be
of any use, see §5. An entity performing audit over data logs for specified appli-
cations would need 〈application name, ∗〉 and again, the privilege to declassify
over all specifiers. The tag needed by the entity performing audit on behalf of an
individual over all their data (from any application) would be 〈∗, person name〉.
The entity would need the privilege to declassify the output, see §5.

In this section we have given the intuition and motivating examples for the
two-component label model of FlowK2. In the next section we present the formal
notation, extending the FlowK model.

5 Two-Component Tags in FlowK2

After studying existing IFC label models [2] we designed and implemented
FlowK. We have previously worked on authorisation policy specification and
implementation [3] and the next phase of our current project was to integrate
application-level policy with IFC. We had explored this in principle in [1] but
the details of translating policy into labels for authorised principals have made
us reconsider existing label models.

As motivated in §4 a major concern was to make our label model more expres-
sive in order to reflect the intended policy accurately, while keeping its general
simplicity (see §3). An important pragmatic concern is to limit the number of
tags in a label, since this has a non-negligible effect on performance [17].

We propose to decompose a tag t into a pair 〈c, s〉 with c the concern of type
C and s a specifier of type S . For example, the pair 〈medical, bob〉 represent
Bob’s medical data. A statistical analysis over a set of patients’ medical data is
represented as 〈medical, statistical analysis〉 and anonymised medical records
as 〈medical, anonymised〉.

As we saw in §4, a major requirement is to be able to specify all data records
of a certain kind without enumerating all possible tags, as required by current
models. Therefore for any concern c and specifier s we establish the following
subtyping relation:

〈c, s〉

〈∗, s〉〈c, ∗〉

〈∗, ∗〉� �

��

That is, a tag t = 〈c, s〉 is a subtype of t′ = 〈c, ∗〉 and t′′ = 〈∗, s〉 which are
themselves subtypes of t′′′ = 〈∗, ∗〉. For instance, 〈medical, bob〉 (Bob’s medical
data) is a subtype of 〈medical, ∗〉 (medical data) and a subtype of 〈∗, bob〉 (Bob’s
data) which are each subtypes of 〈∗, ∗〉 (all data in the current naming context).
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5.1 Changes to Flow Constraints

To adapt rule (1) from §3.1 for the flow A → B, we need only redefine the -
binary relation between sets of tags X and Y as follows:

X - Y iff ∀t ∈ X ∃t′ ∈ Y : t � t′ (7)

Together with rule (1), this entails that a flow A→ B is allowed if and only if for
all secrecy tags of A there exists a super type in the secrecy tags of B and that
for all integrity tags of B there exists a super type in the integrity tags of A. For
example, an entity A labelled with S(A) = {〈medical, bob〉, 〈legislation,EU〉} is
able to send information to an entityB with S(B) = {〈medical, ∗〉, 〈legislation,EU〉}.
For the bi-directional flow A ↔ B in rule (2), the tag sets X and Y must be
equivalent, since:

X ∼ Y iff

{
∀t ∈ X ∃t′ ∈ Y : t � t′

∀t ∈ Y ∃t′ ∈ X : t � t′
(8)

5.2 Changes to Privileges

Rule (4) from §3 becomes:

X(A) := X(A) ∪ {t} if ∃t′ ∈ P+
X (A) : t � t′

OR

X(A) := X(A) \ {t} if ∃t′ ∈ P−X (A) : t � t′
(9)

We also add special privileges noted 〈c,∆〉, 〈∆, s〉 and 〈∆,∆〉 that allow removal
only of the labels 〈c, ∗〉, 〈∗, s〉 and 〈∗, ∗〉 respectively.

For example a process A, with the privilege P−S (A) = {〈medical,∆〉} and
the label S(A) = {〈medical, ∗〉, 〈medical, anonymised〉} is able to declassify
to S(A) = {〈medical, anonymised〉}. The use of ∆ privileges allows the trust
placed in a certain entity to be precise and is particularly useful when specifying
declassifier privileges. Without it, we would have had P−S (A) = {〈medical, ∗〉}
and no guarantee that the process would not declassify to S(A) = ∅ (also re-
moving 〈medical, anonymised〉).
Privilege delegation rule(5), becomes:

A
t±X
↪→ B only if ∃t′ ∈ P±x (A) : t � t′

5.3 Changes to Conflicts of Interest

There are now three types of policy we must express: constraints applied to
whole tags, to concerns and to specifiers. We define three operations on a tag’s
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pair, the projections π1 in C , π2 in S and the identity function id:

π1 : C×S → C π2 : C×S →S
π1(〈c, s〉) = c π2(〈c, s〉) = s

(10)

We extend these operations to sets, such that:

π1:℘(C×S )→ ℘(C ) π2:℘(C×S )→ ℘(S )
π1(T )={π1(t) | t ∈ T} π2(T )={π2(t) | t ∈ T}

={c | 〈c, s〉 ∈ T} ={s | 〈c, s〉 ∈ T}
(11)

For an entity A we note the union of its labels and privileges:

SU(A) = S(A) ∪ I(A) ∪ P+
S (A) ∪ P−S (A) ∪ P+

I (A) ∪ P−I (A) (12)

A conflict of interest is denoted PCoI(f,G) where f is π1, π2 or id and G is a set
of conflicting tags. Rule 6 in §3.4 becomes (where C is a CoI group):

∀PCoI(f, C), |f(SU(A)) ∩ C| ≤ 1 (13)

Here we note:

– {a, b, c} ∩ {∗} = {a, b, c};
– {〈a, b〉, 〈a, d〉, 〈c, d〉} ∩ {〈a, ∗〉} = {〈a, b〉, 〈a, d〉};
– |{∗}| =∞, |{a, ∗}| =∞ and |{∗, a}| =∞.

The conflict of interest rule: PCoI(π1, {medical, private}) means an entity
can handle the concern medical or private but not both. PCoI(id, {〈private, ∗〉})
means an entity can only ever manipulate the private data of a single user.

Consider the example used in 3.4 on isolating processes to manipulate car
company data. A problem with the previous model is that if a new company was
to use the application, a new tag would need to be added to the CoI group. For
a rule applying to a more rapidly changing set this could prove problematic.

Using FlowK2, we have processes labeled [S = {〈car, ford〉}, I = ∅], [S =
{〈car, fiat〉}, I = ∅] etc. and the CoI policy is expressed as: PCoI(id, {〈car, ∗〉}).
This is simple to read and understand (i.e. a process can manipulate information
for only one specifier of concern car) and this policy will not change over time.

5.4 Compatibility with Single-Component Tags

Certain tags in our original work create no problems as single-component tags.
For example, 〈user − input〉 may be included in an Integrity label to indicate
that input data should not be trusted. The tags 〈EU − data〉 and 〈US − data〉
have been used to enforce the geographical location of stored data to allow laws
and regulations to be enforced. Such tags do not need to be two-component tags
but can conveniently be expressed as such, e.g. 〈input, network〉 or 〈location,EU〉.
Policy may or may not be conveniently expressed for such tags using ∗, but if ∗
is never used, our two-component tag model degrades gracefully to what is ef-
fectively a conventional one-component tag model, since both components must
match for data to flow. Backwards compatibility with existing policies that have
been defined for single-component tags is easily achieved by this means.
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6 Implementation and Impact on Performance

We are building cloud and distributed systems around an IFC-aware operating
system [17] and an IFC-aware middleware messaging system [24]. The approach
has been explored for distributed systems in DStar [26] over IFC-aware OS
[13,25] (see §2), but with the need for reengineering software before using IFC.

In FlowK [17], we provide IFC to the OS through a kernel module that inter-
cepts system calls [9] to enforce IFC constraints, while relying on the underlying
system call. We assume that exchange of information between active entities
(processes) occurs through passive entities (files, sockets and pipes) and that
shared memory between processes is not allowed.

Our kernel module maintains a map between entity identifiers (processes,
pipes etc.) and their respective labels and privileges. In system calls such as
write or send, the security context of the process and of the entity associated
with the provided file descriptor (i.e. socket, pipe or file) are retrieved, evaluated
and compared to decide whether the call is authorised (and respectively for read
and recv). System calls not generating information flow are left untouched.

Performance is first influenced by the cost of intercepting system calls. For
FlowK we measured the interception cost on pipe read/write as around 10% per
individual system call. The second factor is the cost of evaluating policy. For this
example the additional overhead is negligible for up to 10 tags, rising to 25%
with 100 tags. The number of tags used to express policy should therefore be
minimised. The measured performance overhead for an application running on
FlowK varies from 5% to 23% [17].

SBUS is a component-based messaging middleware. A component represents
a process whose communication is managed by SBUS. Communication occurs
through endpoints which are protected using IFC constraints. A component will
have a number of endpoints, which can be connected (mapped) to endpoints of
other components to enable communication [22,23]. SBUS supports client/server
and stream-based interactions; both may be required for distributed systems. A
source end-point can be mapped to multiple sinks to allow multicast.

The cost of system call interposition (as described in §6) is not affected
by the policy being enforced so we focus on evaluating the cost of verifying
IFC flow constraints. We compare the cost of evaluating the legality of a flow
A→ B between two entities A and B for FlowK (§3) and FlowK2 (§5). Further
evaluation of FlowK can be found in [17]. For the messaging middleware layer,
policy evaluation can be considered negligible in comparison with network traffic.

In FlowK, tags are represented by 64 bit integers and labels by ordered
arrays. The worst case complexity of determining if a label is a subset of another
is O(n). In FlowK2, a tag is implemented using two 64 bit integers, the worst
case complexity for the 2D tag model is O(n2).

In situations where the policy would be strictly identical as described in
§5.4, FlowK would have a performance advantage over FlowK2 because of the
increased complexity of tag comparison. However, as we showed in §4, the use
of two-component tags allows us to simplify some policies, greatly reducing
their complexity; situations that would have required a large number of tags
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are avoided. We believe that in most cases the number of tags would be few
and the performance similar to basic IFC, with improved performance in some
cases.

7 Conclusion and Future Work

We have described part of our work to demonstrate the feasibility of providing
IFC for cloud and distributed computing. We followed standard practice in de-
signing our original label model and implemented it as a kernel-loadable module
FlowK to enforce IFC. To increase the likelihood of adoption, FlowK requires
no reengineering of the software that uses it.

This paper focusses on a novel enhancement of our label model (FlowK2) to
meet application-level policy requirements. It is unlikely that IFC will be used
in practice unless authorisation policy can be expressed correctly, elegantly and
concisely, and carried through efficiently to runtime. We have shown that two-
component tags solve significant problems in expressing policy and impose no
more runtime overhead than existing IFC implementations.
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