
An Information Flow Control Model for the Cloud

Thomas F. J.-M. Pasquier, Jatinder Singh and Jean Bacon
Computer Laboratory, University of Cambridge

Email: firstname.lastname@cl.cam.ac.uk

Olivier Hermant
MINES ParisTech

Email: hermant@cri.ensmp.fr

Abstract—Concern about data leakage is holding back more
widespread adoption of cloud computing by companies and public
institutions alike. To address this, cloud tenants/applications are
traditionally isolated in virtual machines or containers. But an
emerging requirement is for cross-application sharing of data, for
example, when cloud services form part of an IoT architecture.
Information Flow Control (IFC) is ideally suited to achieving both
isolation and data sharing as required. IFC enhances traditional
Access Control by providing continuous, data-centric, cross-
application, end-to-end control of data flows. FlowK2 However,
large-scale data processing is a major requirement of cloud
computing and is infeasible under standard IFC. We present
a novel, enhanced IFC model which subsumes standard IFC
models. Our IFC model supports ‘Big Data’ processing, while
retaining the simplicity of standard IFC and enabling more
concise, accurate and maintainable expression of policy.

I. INTRODUCTION
Concern about data leakage is holding back more

widespread adoption of cloud computing by companies and
public institutions alike. There is an increasing volume of
legislation [1], but ensuring and demonstrating compliance
with the legislation by cloud service providers and third parties
is problematic. In recent work we have investigated the use
of Information Flow Control (IFC) for distributed and cloud
computing. We made a proof-of-concept implementation of the
standard IFC model as a basis for evaluation [2].

Based on this experience, we believe that the deployment of
IFC to augment traditional authentication and authorisation has
the potential to make a substantial contribution to the security
of distributed and cloud systems, both through enforcement
mechanisms and demonstration of compliance through audit.
However, the use of IFC for large-scale data analytics is
problematic using the standard IFC model. In this paper we
present an enhanced IFC model which, while retaining the
simplicity of expression and implementation of the standard
model, easily extends to large scale. Much work remains to
be done, particularly when cloud services are incorporated
as part of wide-scale distributed systems, as in Internet of
Things (IoT) [3]. In a cloud context, if IFC is incorporated
into cloud service provision as part of PaaS or SaaS clouds,
it can provide continuous, data-centric access control policy
within and across applications, see §II.

Traditionally, (principal/role-specific) access control is ap-
plied before data can be accessed by an entity, after which
no further control is exercised on where that data flows
in the system. In a cloud context, tenants/applications are
traditionally isolated in virtual machines or containers. An
emerging requirement is for cross-application sharing of data,
for example, when cloud services form part of an IoT archi-
tecture [3]. IFC is ideally suited to achieving both isolation
and data sharing as required [4].

IFC augments access control so that data flows are moni-
tored continuously, in context, to enforce more general policy.
This is achieved by associating labels with data and the
entities that process them. Labels comprise a number of tags
that describe the nature and/or source of the data such as
healthcare, personal, government-information etc. Flows
are permitted only if the labels match, as defined in §III.
The challenge in integrating multiple applications’ access
control policy with IFC is to create labels that express policy
accurately, concisely, naturally and efficiently, and in a way
that makes policy changes easy to implement. We believe the
new 2D tag design we present here contributes substantially
to this goal.

We have previously investigated how labels can be used to
enforce certain laws and regulations, such as “data originating
in the EU must not leave its boundaries, except to certain Safe
Harbors” [1], [5], [6] A simple tag EU can be used for this
purpose. But access control policies in general have great rich-
ness and complexity whereas IFC should be simple to express
and enforce, to minimise runtime overhead while allowing
compliance to be audited. A major research question is “which
aspects of access control policies need to be embodied in IFC
tags for continuous, runtime, cross-application enforcement?”
Essentially, problems arise when some software can access all
data items of a certain kind, for example to perform analytics,
generate statistics, anonymise or encrypt, as required for ‘Big
Data’, and other software is restricted to access only one such
item, see §II, §IV.

We propose two-component tags to represent the concern
of data and a specifier for an item of that kind, for example
〈medical , bob〉 for Bob’s medical record, and have imple-
mented this in FlowK2. Such labels more closely reflect the
policy maker’s intent than previous models, and current single-
component tags can easily be expressed in this way, such as
〈location,EU 〉 or 〈regulation,EU111 〉. We have experience
of collaboration in healthcare record management [7], [8]
and monitoring [9] and take examples from this domain to
demonstrate the use of IFC.

The main contribution of this paper is the enhancement
of standard IFC tags to make IFC feasible for ‘Big Data’
processing in the cloud and to allow better expression and
maintenance of policy. The ability to express Conflict of
Interest (CoI) is new in FlowK (§III-E) and CoI support is more
powerful, concisely expressed and capable of maintenance
in FlowK2 (§V-C). We have presented a proof-of-concept
performance evaluation of FlowK elsewhere [2] and here focus
on a comparison of the new tag model with standard IFC.
§II outlines IFC models and application level policy ex-

pression. §III presents our original FlowK model. §IV gives
some motivating examples underlying the design of FlowK2,

showing how two-component tags solve problems of large-
scale data processing under IFC. §V presents the FlowK2
label model, extending that of FlowK. In §VI we outline the
evaluation presented elsewhere and show that the modifications
can easily be implemented and do not affect performance
noticeably. §VII concludes the paper.

II. BACKGROUND AND RELATED WORK
In this section we first introduce IFC and give an overview

of IFC implementations. We then highlight the importance of
what IFC potentially delivers when offered as part of cloud
service provision. Finally we consider the well established
area of authorisation policy with a view to establishing which
aspects should be carried forward into IFC tags for runtime
enforcement.

A. IFC Models & Implementations
IFC is not new. It has long been argued that standard

security techniques, such as firewalls and access control
mechanisms, are not enough to prevent information leakage
[10]. Indeed, it is beyond the scope of such mechanisms
to determine whether, after the controls they impose, the
information is used correctly. For example it is difficult to
determine if the confidentiality of decrypted data is respected
[11]. We therefore need to protect information flow end-to-
end, in particular when information is transmitted within and
between applications.

In 1976, Denning [10] proposed a Mandatory Access Con-
trol (MAC) model to track and enforce rules on information
flow in computer systems. In this model, entities are associated
with security classes. The flow of information from an entity
a to an entity b is allowed only if the security class of b
(denoted b) is equal to or higher than a. This allows the
no-read up, no-write down principle of Bell and LaPadula
[12] to be implemented to enforce secrecy. By this means a
traditional military classification public, secret, top secret can
be implemented. A second security class can be associated
with each entity to track and enforce integrity (quality of
data) during reading down and writing up, as proposed by
Biba [13]. A current example might distinguish information
from a government website in the .gov.uk domain from that
from “Joe’s Blog”. Using this model we are able to control and
monitor information flow to ensure data secrecy and integrity.

In 1997 Myers [14] introduced a decentralised IFC model
(DIFC) that has inspired most later work. This model was
designed to meet the changing needs of systems from global,
static, hierarchical security levels to a more fluid system, able
to capture the needs of different applications. In this model
each entity is associated with two labels: a secrecy label and an
integrity label, to capture respectively the privacy/confidential-
ity of the data and the reliability of a source of data. Each label
comprises a set of tags, each of which represents some security
concern. Data are allowed to flow if the security label of the
sender is a subset of the label of the receiver, and conversely
for integrity.

We describe in §III the model we use in FlowK that
follows this general idea. Details of implementations of IFC
at language [11], language library and operating system level
are given in [2], [15]. She et al. [16], use run-time dependency
and information flow control to track information within and
between services in a cloud service composition chain. Roy et
al. [17] and Akoush et al. [18] propose to implement IFC in a

MapReduce framework to prevent the computation provider
leaking data from the data provider. In §III we present a
modification to the IFC model to support scaling to millions
of user-defined tags. Finally, Xie et al. [19] propose IFC to
secure stream processing in the cloud to prevent data disclosure
between competing organisations. They implement a Chinese
Wall policy, improving on [20]. Our model described in §III,
achieves this through Conflict of Interest groups. In this paper
we focus on using IFC to express and enforce application level
policy.

B. The need for IFC in Cloud Computing
IFC controls and restricts the use of data beyond appli-

cations’ access control points, during the whole life cycle of
a piece of information. Therefore users and applications can
safely share and exchange data, if they are willing to trust
the cloud provider as a policy-enforcing third-party. Indeed,
IFC allows the nature of the shared data usage to be defined
precisely and enforced (e.g. data labelled as medical can only
flow to applications that have been authorised to manipulate
such data and are labelled as such). The trust relationship is
greatly simplified as only a common, well-defined party needs
to be trusted (i.e. the cloud provider). This potentially leads to
more data sharing and the emergence of cross-silo innovative
applications.

Our IFC design is such that application instances need not
be aware that their execution is controlled by IFC. We built a
framework for web service provision [2] where an application
manager is privileged to create a security context for each
application instance, see §III. This involves creating tags and
assigning labels to application instances.

IFC enforcement takes place on every system call and
inter-machine data exchange. It is therefore a natural place
for an audit log to be created; moreover, such a log is in
terms of applications’ data flows rather than low-level system
concerns. Such an audit log can be used by cloud providers to
demonstrate compliance with laws, regulations and contracts.
It can also be used to show whether a claimed data leak did
in fact occur. Such logs are ‘Big Data’ and tools are needed
to process them efficiently.

Authorisation policy tends to be application-specific. When
data needs to be used by more than one application, policy
differences and conflicts can occur. When data is labelled for
IFC, authorisation policy is enforced across all entities that use
the data. As data sharing becomes more pervasive, for example
when cloud services are incorporated into ‘Internet of Things’
applications, system-wide, end-to-end policy enforcement will
be crucial.

IFC does not have cybersecurity as its main focus but its
detection of attempted illegal flows and its strict containment
of data flows can contribute to early detection and/or damage
limitation.

C. Role Based Access Control
RBAC is a mature, widely used access control scheme

with a large literature and existing standards [21], [22].1 Role
definitions in RBAC tend to be functional in their scope, being
application- or organisation-specific. Administrative roles are
also included to capture the need to manage RBAC itself.

1http://csrc.nist.gov/groups/SNS/rbac/

http://csrc.nist.gov/groups/SNS/rbac/

In work on RBAC by ourselves [8] and others [23], [24],
parametrised roles were found to provide elegant expression
of policy and avoid explosion in the number of roles required.
For example, certain company software such as “Payroll” may
need to access all employees’ data whereas each employee can
access only their own data record. To achieve this, a company
either creates a role per employee e.g. employee smith or
parametrises a single role, for example employee(smith) etc.
The Payroll software can then access employee(*), where *
indicates all employees. In this paper we argue that the IFC
label model needs similar refinement in order to carry forward
to runtime such aspects of application policy, thus following
the PoLP.

Role parametrisation allows for relationships between pa-
rameters and for exclusions to be checked. For example
the role treating doctor(doctorID, patientID) allows the role
to express the dynamic set of patients for each doctor for
controlling access to records. An exclusion is expressed as
a rule on a parameter value to indicate, for example, “all
doctors can access my records except doctorID”, see [8].
In §IV we argue that such checks are most appropriately
carried out at the authorisation point within the application.
Environmental/context checks such as “A Pharmacist can only
authorise the issuing of drugs while on duty in the Pharmacy”
can be enforced continuously by IFC using appropriate label
design.

III. ATOMIC TAG MODEL
IFC augments authorisation by enforcing dynamically, end-

to-end, across applications, that only permitted flows of infor-
mation can occur. Entities to which IFC constraints are applied
include cloud web applications [2], a web worker instance [18],
a file, a database entry [25] etc.. IFC is applied continuously,
typically on every system call for an IFC-enabled OS. IFC
policy should therefore be as simple as possible, to allow
verification and human understanding and to minimise runtime
overhead.

A. Enforcing Safe Flows via Labels
A tag within a label’s set of tags represents a particular

security concern for a category of data. In our IFC model
two labels are associated with every entity A: a secrecy label
S(A) and an integrity label I(A). The current state of these
two labels (sets of tags) is the security context of an entity.

A flow of information from an entity A to an entity
B, denoted A → B, is allowed if the following rules are
respected:

A→ B, iff S(A) - S(B) ∧ I(B) - I(A) (1)

where the preorder - denotes mere inclusion ⊆ (it will be
refined for our two-component tag model in §V). These checks
are simple to understand and apply, involving only matching
of the tags at the communication endpoints.

Consider the read and write functions of the Bell-LaPadula
model [12] and the Biba model [13]. In the IFC world read is
the equivalent of an incoming flow and write is the equivalent
of an outgoing flow. The subrule concerning secrecy labels
ensures that an entity only passes information to an entity
that is allowed to receive it, thus enforcing the “no read
up, no write down” policy of the Bell-LaPadula model. The
subrule concerning integrity labels enforces quality of data
during reading down and writing up, as proposed by Biba

[13]. It is therefore possible to represent traditional security
requirements as IFC constraints, although we use labels to
represent more general security contexts, e.g., integrity can
also indicate authority, such as to send an actuation command
to a vehicle or home automation device.
Example – secrecy: Suppose a hospital patient Bob, on being
discharged to his home, is issued with a heart monitor. Data
from this device is stored in his home system and also flows to
a process in the hospital’s system, which carries out an analysis
of his condition. Because Bob’s health data is private the heart
monitor and data are labelled with S = {medical , bob}. In
order to receive this data, the hospital process’s S label must
also include the tags medical and bob.
Example – integrity: The hospital process is only allowed to
receive data from a hospital-issued device and to achieve this is
labelled I = {hospital− issued}. In order to send data to the
hospital process, Bob’s device and data must also be labelled
I = {hospital − issued}. Suppose Bob’s heart monitor is
capable of remote actuation, e.g. to change the sampling rate
if analysis detects a possible health problem. The device must
only accept actuation commands from authorised sources, e.g.
also labelled I = {hospital − issued}.
B. Creation of an Entity

We define A⇒ B as the operation of the entity A creating
the entity B. We have the following rules for creation:

if A⇒ B, then S(B) := S(A) and I(B) := I(A) (2)

That is, the created entity inherits the labels of its creator.
Examples are creating a process in a Unix-style OS by fork
and creating passive data such as files or messages.

C. Privileges for Managing Tags and Labels
Certain active entities (e.g. an application manager) have

privileges that allow them to modify their labels. An entity has
two sets of privileges for removing tags from its secrecy and
integrity labels (P−S for S and P−I for I), and two sets for
adding tags to these labels (P+

S for S and P+
I for I). That is,

for an entity A to remove the tag ts ∈ S(A), it is necessary
that ts ∈ P−S (A), similarly to add the tag ti to the label I(A)
it is necessary that ti ∈ P+

I (A).
For an entity A, a label X(A) (where X is S or I) and a

tag t, a change of the label is authorised if the following rule
is respected:

X(A) := X(A) ∪ {t} if t ∈ P+
X (A) or

X(A) := X(A) \ {t} if t ∈ P−X (A)
(3)

For example, in order to receive information from an entity
B, an entity A will need to set its labels (if it has the privilege)
such that the flow constraints expressed by the tags associated
with B are respected, that is such that the flow B → A respects
the safe flow subrules in rule (1). We propose the following
notation: for a process and its labels (A,S, I) (A,S′, I ′) is
the modification of the process labels following rule (3).

Only privileged processes can change their security context.
We envisage application instances running within a constant
security context and being unaware of IFC [2]. A privileged
application manager creates these instances, and privileged
processes are invoked transparently.

Example – declassification: Suppose the hospital that re-
ceives health monitoring data from its patients at home wishes
to make these data available for research on the efficacy
of home monitoring. Before releasing such a data set it
must be anonymised, i.e. individual patients must not be
identifiable from the data. A process that carries out the
anonymisation process must have the privilege to read the
private data before anonymisation; i.e. the input data set and
the process may be labelled S = {medical , private}. After
anonymisation, the process must output data labelled with,
say, S = {medical , anonymised}. The anonymisation process
must therefore have the privilege to remove the tag private
from its S label and add the tag anonymised before outputting
the data.

In the case where data needs to become more carefully
controlled and less widely available, e.g., after decryption, the
reverse process of classification would involve, e.g. removing
a tag encrypted and adding a tag private .

Example – endorsement: Endorsement usually involves
adding a tag to an I label. For example, a process might
receive data from the network, carry out a verification process
then output the data with tag valid data . Such a process may
be involved in data format conversion if non-standard data
could be input from a remote source. A similar endorsement
process can be used for many kinds of input data such as PhP
scripts, downloaded software, indeed, any input amenable to a
validation process.

In our hospital example, the patient may have received
some treatment in another hospital or clinic and have a
treatment record there, where the format may differ. A process
is charged with checking the patient’s identity and verifying
the data, including reformatting. The data is then output with
tag valid data and can be safely processed within the hospital
domain.

Integrity tags may need to be removed after an anonymisa-
tion process, as the quality of data may have been degraded by
the process. For example, if detailed information is removed,
the data may no longer be proper to use as the source of an
actuation decision.

D. Creation and Privileges
On creation, labels are automatically inherited by a created

entity from its creator (rule 2), but privileges are not. If the
child is to be given privileges over its labels, they must be
passed explicitly. We denote the flow generated by an entity

A giving selected privileges t±X to an entity B as A
t±X
↪→ B (for

example allowing t to be removed from S, would be denoted

A
t−S
↪→ B). In order for a process to delegate a privilege to

another process it must own this privilege itself. That is,

A
t±X
↪→ B only if t ∈ P±X (A) (4)

E. Separation of Duty (SoD) and Conflict-of-Interest (CoI)
A policy maker may need to specify a SoD or CoI between

principals and/or roles [26], [27]. An example of SoD is that
an auditor may not audit their own actions. A CoI may arise
when a principal could give professional advice to a number
of competing companies. Separation of data access may be
enforced by a Chinese Wall policy [27].

We believe CoI support in IFC is unique to FlowK. We

define a set C of tags that represents some specified conflicting
interests. In order for the configuration of an entity A to be
valid with respect to C, rule (5) must be respected:∣∣∣(S(A)∪I(A)∪P+

S (A)∪P+
I (A)∪P−

S (A)∪P−
I (A)

)
∩C

∣∣∣≤1 (5)

That is, an entity is non-conflicting in this context if the set
of its potential tags (past, present and future) contains at most
one element from the set of tags within the related CoI group.
In detail, by potential tags we mean the tags in its current S
and I labels and those tags that it has the privilege to add to
S(A) (i.e. P+

S (A)) and to I(A) (i.e. P+
I (A)) or that it may

have removed from S(A) (i.e. P−S (A)) and from I(A) (i.e.
P−I (A)). CoI rules should be checked every time a privilege
is granted.

Example – conflict of interest: A CoI might arise when data
relating to competing companies is available in a system. In a
hospital context, this might involve the results of analysis of
the usage and effects of drugs from competing Pharmaceutical
companies. The companies might agree to this analysis only if
their data is guaranteed to be isolated, i.e. not leaked to other
companies.

Taking a simple example from everyday life: suppose a
conflict is C = {fiat , ford , audi , ...} and some data (e.g. files)
are labelled FiatData[S = {fiat}, I = ∅] and FordData[S =
{ford}, I = ∅]. The CoI described ensures that it is not
possible for a single entity (e.g. an application instance) to have
access to both FordData and FiatData either simultaneously
or sequentially, i.e. enforcing that Ford-owned data and Fiat-
owned data are processed in isolation.

IV. MOTIVATING USE CASES
In this section we motivate the use of two-component

tags in FlowK2’s label model. Our model is designed for a
distributed system or cloud platform where there is likely to
be a large amount of user data stored with persistent labels
in files, databases, key-value stores etc. In a company context,
data records may relate to individual employees; in a public
health context, data may be the medical records of patients;
in an educational context, data may relate to students, staff
etc. Specifying and enforcing access to all, some specified
subgroup or only one data record of a given type is a universal
requirement, discussed in the literature on policy.

Suppose a principal is allowed access to a subset of
records, e.g. doctors may be able to access only the records of
the patients they are currently treating. Temporally separated
instantiations of the application are likely, i.e. to one patient’s
records at a time. Each time, current authorisation policy
is enforced and is translated into labels to ensure correct
behaviour at runtime. Note that as a doctor’s group of patients
under treatment changes, a lookup of current patients at the
authorisation point in the application will ensure that labels
are created only for current patients, selected at runtime from
the entire database.

The first use case below arises from the need of certain soft-
ware to perform computations on all records of a given type,
whereas other software is authorised only to access records on
behalf of a single individual. The second considers a system
log containing records from all running applications relating
to large numbers of principals. These problems are akin to the
role proliferation that motivated role parametrisation in RBAC,

〈medical , patient id〉

〈∗, patient id〉

〈∗, anonymised〉

〈statistics, anonymised〉

〈statistics, anonymised〉

〈private, patient id〉

Figure 1: ‘Big data’ Directed Graph Computation (as in Dryad
[28]) showing secrecy labels.

as mentioned in §II.
We have solved these problems by making our tags more

expressive to reflect the intended policy more accurately.
Also, this new tag structure correctly represents the trust
that should be placed in certain entities, according to PoLP.
We use two-component tags, where a tag is of the form
〈concern, specifier〉. We use 〈concern, ∗〉 to indicate all tags
of the specified concern and 〈∗, specifier〉 for tags of all
concerns with the given specifier. 〈∗, ∗〉 then indicates all tags
in some naming domain. In §V we present this label model
more formally.

A. Data Analysis
In the healthcare domain, statistical analysis of the medical

records of patients is needed for various purposes including
public health, environmental concerns, clinical practice etc. We
are concerned with the privacy and confidentiality of medical
data and will therefore discuss the construction of the IFC
secrecy label for a statistical analysis program.

In the current FlowK model a tag represents a single
security concern. To express the idea of Bob’s medical data, we
would use two tags bob data and medical data . The entity
carrying out the statistical analysis of the medical data would
then need to have not only the medical data tag, but also
a tag corresponding to every patient’s data, for rule (1) to
be satisfied. This makes the use of IFC infeasible for such
purposes: (1) The performance implications are significant.
We have shown [2] that the processing overhead induced by
the number of tags in labels is not insignificant (especially
at this scale). (2) Enumerating “all” tags would be prone to
error as the database state changes, with records being added
and removed. (3) This entity would be over-privileged by the
PoLP, being able to receive any data labelled only with the
tag bob data although our intention was for it only to be
concerned with medical data . It would also be privileged to
declassify, see §III-C, over all the patients’ personal tags and
trusted not to leak information about any patient. An alternative
would be to define different tags for every category of user data
such as bob medical data , bob tax data , bob home data
and many more. The performance issues caused by huge
numbers of tags would still hold. Also, an entity running on
behalf of Bob could not simply have a label with a single tag
bob data but would have to enumerate all the particular types

of Bob’s data it could process.
The problems are solved by using two-component tags,

where a tag is of the form 〈concern, specifier〉. In Fig. 1,
we illustrate how such IFC tags can be used to constrain the
flow of data within a ‘big data’ computation graph. The first
computation phase aggregates medical and private information
belonging to individual patients. The second phase anonymises
these aggregates and the third generates statistical data from
the anonymised data.

In detail, suppose each input record has an S la-
bel containing a tag such as 〈medical , patient id〉 or
〈private, patient id〉. We express that the first phase pro-
cessing components can access all data belonging to a pa-
tient by including the tag 〈∗, patient id〉 in their S labels,
where ∗ indicates all records with specifier patient id . These
components output equivalently labelled data (§III rule (2))
which is input to the second phase components (also labelled
〈∗, patient id〉) for anonymisation. The anonymisers must
change their security context (see III-C) in order to output
data labelled 〈∗, anonymised〉.

The third phase processes (also labelled 〈∗, anonymised〉)
input the anonymised data and carry out statistical analysis.
These processes must change their security context in order
to output data labelled 〈statistics, anonymised〉. Finally, the
anonymised statistical data is used, the results being output
without need of a further security context change.

By specifying for each task the expected input and output
security context and enforcing them in the operating system
and across machines, we are able to guarantee that no data
leakage can occur between concerns (e.g. from private to
medical) or between specifiers (i.e. patients).

B. Log Audit
Consider a system log which several active entities are able

to access. A process concerned with digital forensics requires
access to the whole log to detect and investigate suspicious
patterns of behaviour; applications, e.g. cloud tenants, and
individual users should be able to audit the use of their own
data.

With the current model an entity performing audit over
all log records would need access to all relevant concerns
and specifiers: in FlowK2’s model 〈∗, ∗〉. It would need
declassification privileges over all those data for the audit
result to be readable as required, see §V. An entity performing
audit over data logs for specified applications would need
〈application name, ∗〉 and again, the privilege to declassify
over all specifiers. The tag needed by the entity performing
audit on behalf of an individual over all their data (from any
application) would be 〈∗, person name〉. The entity would
need the privilege to declassify the output, see §V.

In this section we have given the intuition and motivating
examples for the two-component label model of FlowK2. In
the next section we present the formal notation, extending the
FlowK model.

V. TWO-COMPONENT TAG MODEL
A major aim for FlowK was simplicity, for ease of under-

standing and verfication, and efficiency of enforcement. This
section presents the formal notation for the two-component
tag model of FlowK2, as motivated in §IV. We will show
that policy, particularly for large-scale data processing, is
expressed more concisely using FlowK2 and is easier to

maintain. Also, tag-checking overhead is comparable for small-
scale processing and is reduced for large-scale processing.

We propose to decompose a tag t into a pair 〈c, s〉 with
c the concern of type C and s a specifier of type S . For
example, the pair 〈medical , bob〉 represent Bob’s medical data.
A statistical analysis over a set of patients’ medical data is rep-
resented as 〈medical , statistical analysis〉 and anonymised
medical records as 〈medical , anonymised〉.

As we saw in §IV, a major requirement is to be able to
specify all data records of a certain kind without enumerating
all possible tags, as required by current models. Therefore
for any concern c and specifier s we establish the following
subtyping relation:

〈c, s〉

〈∗, s〉〈c, ∗〉

〈∗, ∗〉� �

��

That is, a tag t = 〈c, s〉 is a subtype of t′ = 〈c, ∗〉 and
t′′ = 〈∗, s〉 which are themselves subtypes of t′′′ = 〈∗, ∗〉. For
instance, 〈medical , bob〉 (Bob’s medical data) is a subtype of
〈medical , ∗〉 (medical data) and a subtype of 〈∗, bob〉 (Bob’s
data) which are each subtypes of 〈∗, ∗〉 (all data in the current
naming domain).

A. Changes to Flow Constraints
To adapt rule (1) from §III-A for the flow A → B, we

need only redefine the - binary relation between sets of tags
X and Y as follows:

X - Y iff ∀t ∈ X ∃t′ ∈ Y : t � t′ (6)

Together with rule (1), this entails that a flow A → B is
allowed if and only if for all secrecy tags of A there exists
a supertype in the secrecy tags of B and that for all integrity
tags of B there exists a supertype in the integrity tags of A.

Example – secrecy: The examples illustrating the FlowK
model given in §III, relate to hospital patients being mon-
itored in their homes. We saw that the process receiving
Bob’s heart rate data, labelled with S = {medical , bob},
also needed to have the tags medical and bob in its S
label. This process would need a tag for every such patient
(S = {medical , alice, bob, charlie, donald , etc....}) and the
(large) set of patients’ tags would need to be kept consistent
with the current set of home-monitored patients. Instead, in
FlowK2, we propose to label the process S = {〈medical , ∗〉}.
This expresses the intended policy concisely and accurately,
without the need to maintain the current set of patients’ tags.
In the implementation, the tag matching overhead on every
system call is linear with the number of tags [2]. This overhead
is reduced by using the single 2D tag 〈medical , ∗〉.
Example – integrity: Consider a home control (domotic)
system. An entity A labelled I(A) = {〈actuator , ∗〉} is
able to send data (an actuation instruction) to an entity B
labelled I(B) = {〈actuator , alarm〉} or an entity C labelled
I(C) = {〈actuator , light〉}. The entity A could represent the
central domotic control system with B and C being actuators
in the house. In a patient monitoring context the controller
might be sending actuation commands to a variety of patient

monitoring devices, e.g., to start, stop or change the monitoring
intervals. Since actuation affects the physical world, including
people’s health and safety, it is important that the authority of
the actuation command is established.

B. Changes to Privileges
Rule (3) from §III becomes (where X is S or I):

X(A) := X(A) ∪ {t} if ∃t′ ∈ P+
X (A) : t � t′ or

X(A) := X(A) \ {t} if ∃t′ ∈ P−X (A) : t � t′ (7)

We also add special privileges noted 〈c,∆〉, 〈∆, s〉 and
〈∆,∆〉 that allow removal only of the labels 〈c, ∗〉, 〈∗, s〉 and
〈∗, ∗〉 respectively.

The privilege delegation rule (4), becomes:

A
t±X
↪→ B only if ∃t′ ∈ P±X (A) : t � t′

Example – declassification: A process A, with the priv-
ilege P−S (A) = {〈medical ,∆〉} and the label S(A) =
{〈medical , ∗〉, 〈medical , anonymised〉} is able to declassify
to S(A) = {〈medical , anonymised〉}, but does not have
the privilege to remove 〈medical , anonymised〉. The use of
∆ privileges therefore allows the trust placed in a certain
entity to be precise and is particularly useful when speci-
fying declassifier privileges. Without it, we would have had
only P−S (A) = {〈medical , ∗〉} and no guarantee that the
process would not declassify to S(A) = ∅ (also removing
〈medical , anonymised〉), thus allowing universal access to the
anonymised data, rather than to medical research processes
with the tag 〈medical , anonymised〉.
Examples – integrity label changes: A process A, with the
privilege P−S (A) = {〈actuator ,∆〉} and the label I(A) =
{〈actuator , ∗〉, 〈actuator , alarm〉} is able to remove the tag
〈actuator , ∗〉 but not the tag 〈actuator , alarm〉. A process A,
with the privilege P−S (A) = {〈local ,∆〉} and the label I(A) =
{〈network , ∗〉, 〈local , ∗〉} is able to remove the tag 〈local , ∗〉,
after endorsing local input but not the tag 〈network , ∗〉.

C. Changes to Conflicts of Interest
There are now three types of policy we must express: con-
straints applied to whole tags, to concerns and to specifiers.
We define three operations on a tag’s pair, the projections π1
in C , π2 in S and the identity function id:

π1 : C×S → C π2 : C×S → S
π1(〈c, s〉) = c π2(〈c, s〉) = s

(8)

We extend these operations to sets, such that:

π1 : ℘(C×S)→ ℘(C) π2 : ℘(C×S)→ ℘(S)
π1(T) = {π1(t) | t ∈ T} π2(T) = {π2(t) | t ∈ T}

= {c | 〈c, s〉 ∈ T} = {s | 〈c, s〉 ∈ T}
(9)

For an entity A we note the union of its labels and privileges:

SU(A)=S(A)∪I(A)∪P+
S (A)∪P−

S (A)∪P+
I (A)∪P−

I (A) (10)

A conflict of interest is denoted PCoI (f,G) where f is π1,
π2 or id and G is a set of conflicting tags. Rule 5 in §III-E
becomes (where C is a CoI group):

∀PCoI (f, C), |f(SU(A)) ∩ C| ≤ 1 (11)

Here we note:
• {a, b, c} ∩ {∗} = {a, b, c};
• {〈a, b〉, 〈a, d〉, 〈c, d〉} ∩ {〈a, ∗〉} = {〈a, b〉, 〈a, d〉};
• |{∗}| =∞, |{a, ∗}| =∞ and |{∗, a}| =∞.
The conflict of interest rule: PCoI (π1, {medical, private})

means an entity can handle the concern medical or private but
not both. PCoI (id, {〈private, ∗〉}) means an entity can only
ever manipulate the private data of a single user.

Example – conflict of interest: Consider the example used
in §III-E on isolating application instances that manipulate car
data for different companies. If a new company was to use
the application, a new tag would need to be added to the CoI
group. For a rule applying to a more rapidly changing set this
could prove problematic.

Using the FlowK2 model, we have application instances
labeled
[S = {〈car , ford〉}, I = ∅], [S = {〈car ,fiat〉}, I = ∅] etc. and
the CoI policy is expressed as: PCoI (id, {〈car , ∗〉}). This is
simple to read and understand (i.e. an application instance can
manipulate information for only one specifier of concern car)
and this policy will not change over time as companies come
and go.

D. Compatibility with Single-Component Tags
Certain tags in our original work create no problems as

single-component tags. For example, 〈network-input〉 may be
included in an Integrity label to indicate that input data should
not be trusted. The tags 〈EU-data〉 and 〈US-data〉 can be used
to enforce the geographical location of stored data to allow
laws and regulations to be enforced. Such tags do not need
to be two-component tags but can conveniently be expressed
as such, e.g. 〈input, network〉 or 〈location,EU〉. Policy may
or may not be conveniently expressed for such tags using ∗,
but if ∗ is never used, our two-component tag model degrades
gracefully to what is effectively a conventional one-component
tag model since both components must match for data to flow,
as for two separate tags. Backwards compatibility with policies
defined for atomic tags, could be achieved e.g. by a convention
that the single tag should become a specifier of a null concern
in a two-component tag.

E. Is More General Tag Complexity Needed?
A major research question (§I) is “which aspects of access

control policies need to be embodied in IFC tags for contin-
uous, runtime, cross-application enforcement?” It is possible
to design tags that capture every aspect of e.g. parametrised
RBAC with environmental constraints [8]. But for IFC to be
deployed in practice it needs to be simple to understand and
evaluate and to impose minimal overheads due to management
and enforcement. Further work is needed on IFC label design
for specific (cross-application) use cases, but our experience to
date is that few tags are needed to capture legal/regulatory and
compliance requirements at runtime [5], [29] and many checks
need only be done at authorisation points in applications. In
this work we have seen the need to generalise tags for a specific
style of application that is central to cloud service provision,
large-scale data analytics.

VI. EVALUATION
Our IFC platform is built from several components: a local

OS IFC enforcement system [2] and a messaging middleware

0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

Figure 2: Performance comparison for unmonitored and 0-100 tags:
FlowK (cross), FlowK2 compatibility mode (circle), FlowK2 * policy
(square); normalised over FlowK with label size 0.

for inter-process communication within our cloud platform
[30]. Above these building blocks it is possible to build a
PaaS (and by extension SaaS) platform as discussed in [2],
[4]. Performance evaluation of FlowK was carried out on a
quad-core 2.2Ghz Intel i7 with 6GiB of RAM running Fedora
20 (kernel version 3.14). Our aim here is strictly to compare
the impact on performance of the 2D tag model compared with
atomic tags and not to evaluate a specific implementation, as
this is already available in [2].

Suppose a data analysis worker needs to be given access
to the data belonging to several users (see §IV). We assume
each user has his data uniquely labelled. To run under IFC,
the number of tags needed by the analyser increases linearly
with the number of users.

Firstly, we run the 1D tag model’s IFC constraints al-
gorithm over an increasing number of secrecy tags. That
is, for four users we would have data labelled as S =
{medical, alice}, S = {medical, bob} etc. and the analysing
process labelled as S = {medical, alice, bob, ...}.

Secondly, we run the 2D tag model in 1D tag compatibility
mode (see §V-D). That is, the data to be analysed is labelled
as S = {〈medical , alice〉} etc. and the analysing process as
S = {〈medical , alice〉, 〈medical , bob〉, ...}.

Finally, we use the full power of our proposed 2D tag
model. That is, the data to be analysed is labelled as S =
{〈medical , alice〉} etc. and the analysing process as S =
{〈medical , ∗〉}. The overhead measured is shown in Fig. 2.
We take an analysis process with a label size varying from 0
to 100 tags, the data label is taken from the tags present in
the analysis process’s label. We repeat the operation 100,000
times and average the result. We see clearly that when using
the {∗} specifier in policy, the performance is not dependent
on the number of users. This is extremely important in a cloud
environment where the number of tags required to analyse user
data could scale to the millions.

As discussed previously and presented in [2], there is a cost
to security interposition that is not affected by the complexity
of the policy to be enforced. The worst case complexity of
the 1D tag policy algorithm is O(n). On average, the worst
case complexity of our 2D tag model is O(n2). However, we
have seen that in scenarios when label complexity has a major
impact on performance (i.e. the number of tags is high), the
2D tag model may reduce the number of tags necessary for
the policy to be expressed.

In practice, it is likely that IFC would need to be deac-
tivated or data aggressively declassified in order to perform

such analyses when using the standard IFC model. Indeed, the
management of such a policy through an existing list of user-
associated tags would rapidly become impossible, without even
considering performance issues, for services with a large user
base. We believe our proposed model allows such operations to
remain controlled by IFC with good performance, easy policy
management and without compromising users’ data security.

VII. CONCLUSION AND FUTURE WORK
The feasibility of IFC has been demonstrated in prac-

tical systems: in the database domain [25], [31], for web-
applications [32], for cloud-service composition [16], within
OS [2], [33], across distributed systems [30], [34], for PaaS
[4], for networks [35], for hypervisors [36] and for cloud
data processing [17], [18]. It has been shown that, with
careful design, IFC does not require changes to cloud tenant
applications [2], [17], but would require some engineering
effort by the cloud provider.

The benefit of providing IFC as part of cloud services is
that IFC supports both application isolation and data sharing
between applications as required. Cross-application data shar-
ing, as opposed to strong isolation, is of increasing importance,
particularly when cloud services form part of IoT architectures.
As clouds become akin to utilities that provide computing
services, proof of compliance with regulations and contracts
will become necessary. IFC naturally provides audit at a
meaningful data-specific level, rather than via system logs.

Previous IFC implementations have followed the standard
atomic tag model which is simple to express and enforce, but
is infeasible for use in large-scale data analysis, where the
number of tags required to enforce individuals’ privacy scales
with the number of entities to be processed. We have shown
that a simple extension of this model to two-dimensional tags
allows IFC to be used for large-scale data analysis, with
equivalent (or improved) performance and enhanced policy
expression and maintenance.

REFERENCES
[1] C. J. Millard, Ed., Cloud Computing Law. OUP, 2013.
[2] T. F. J.-M. Pasquier, J. Bacon, and D. Eyers, “FlowK: Information

Flow Control for the Cloud,” in 6th International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, Dec 2014.

[3] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “20 Cloud Security
Considerations for Supporting the Internet of Things,” under review.

[4] T. F. J.-M. Pasquier, J. Singh, and J. Bacon, “Information Flow
Control for Strong Protection with Flexible Sharing in PaaS,” in Proc.
International Workshop on Future of PaaS, ser. IC2E. IEEE.

[5] T. Pasquier and J. Powles, “Expressing and Enforcing Location Re-
quirements in the Cloud using Information Flow Control,” in Interna-
tional Workshop on Legal and Technical Issues in Cloud Computing
(Claw’15). IEEE, 2015.

[6] K. Hon, C. Millard, C. Reed, J. Singh, I. Walden, and J. Crowcroft,
“Policy, Legal and Regulatory Implications of a Europe-Only Cloud,”
Queen Mary University of London, School of Law, Tech. Rep., 2014.
[Online]. Available: http://papers.ssrn.com/sol3/papers.cfm?abstract
id=2527951

[7] T. Pasquier, B. Shand, and J. Bacon, “Information Flow Control for a
Medical Web Portal,” in e-Society 2013. IADIS, March 2013.

[8] J. Bacon, K. Moody, and W. Yao, “A Model of OASIS Role-based
Access Control and its Support for Active Security,” ACM Transactions
on Information and System Security (TISSEC), vol. 5, no. 4, pp. 492–
540, Nov. 2002.

[9] J. Singh and J. Bacon, “On Middleware for Emerging Health Services,”
Journal of Internet Services and Applications, vol. 5, no. 6, pp. 1–34,
2014.

[10] D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, no. 5, pp. 236–243, May 1976.

[11] A. Sabelfeld and A. Myers, “Language-based information-flow secu-
rity,” IEEE JSAC, vol. 21, no. 1, pp. 5–19, Jan. 2003.

[12] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathemat-
ical Foundations and Model,” The MITRE Corp., Bedford MA, Tech.
Rep. M74-244, May 1973.

[13] K. J. Biba, “Integrity Considerations for Secure Computer Systems,”
MITRE Corp., Tech. Rep. ESD-TR 76-372, 1977.

[14] A. C. Myers and B. Liskov, “A Decentralized Model for Information
Flow Control,” in 17th Symposium on Operating Systems Principles
(SOSP). ACM, 1997, pp. 129–142.

[15] J. Bacon, D. Eyers, T. Pasquier, J. Singh, I. Papagiannis, and P. Pietzuch,
“Information Flow Control for Secure Cloud Computing,” IEEE TNSM
SI Cloud Service Management, vol. 11, no. 1, pp. 76–89, March 2014.

[16] W. She, I.-L. Yen, B. Thuraisingham, and S.-Y. Huang, “Rule-Based
Run-Time Information Flow Control in Service Cloud,” in Web Services
(ICWS), 2011 IEEE International Conference on. IEEE, 2011, pp.
524–531.

[17] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat:
Security and privacy for mapreduce.” in 7th USENIX Symposium on
Networked System Design and Implementation, vol. 10. Usenix, 2010,
pp. 297–312.

[18] S. Akoush, L. Carata, R. Sohan, and A. Hopper, “Mrlazy: Lazy runtime
label propagation for mapreduce,” in 6th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 14). USENIX Association.

[19] X. Xie, I. Ray, R. Adaikkalavan, and R. Gamble, “Information flow
control for stream processing in clouds,” in Proceedings of the 18th
ACM symposium on Access control models and technologies. ACM,
2013, pp. 89–100.

[20] R. Wu, G.-J. Ahn, H. Hu, and M. Singhal, “Information flow control
in cloud computing,” in IEEE CollaborateCom, 2010, pp. 1–7.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, Feb.
1996.

[22] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST Standard for Role-based Access Control,”
ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, Aug. 2001.

[23] L. Giuri and P. Iglio, “Role templates for content-based access control,”
in Proceedings of the Second ACM Workshop on Role-based Access
Control, ser. RBAC ’97. New York, NY, USA: ACM, 1997, pp. 153–
159.

[24] E. Lupu and M. Sloman, “Reconciling Role Based Management and
Role Based Access Control,” in Proceedings of the Second ACM
Workshop on Role-based Access Control, ser. RBAC ’97. New York,
NY, USA: ACM, 1997, pp. 135–141.

[25] D. Schultz and B. Liskov, “IFDB: Decentralized Information Flow
Control for Databases,” in 8th ACM European Conference on Computer
Systems (Eurosys). ACM, 2013, pp. 43–56.

[26] R. Sandhu, “Separation of Duties in Computerized Information Sys-
tems,” in Database Security IV: Status and Prospects, 1990.

[27] D. Brewer and M. Nash, “The Chinese Wall security policy,” in IEEE
Symposium on Security and Privacy, 1989, pp. 206–214.

[28] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 3. ACM, 2007,
pp. 59–72.

[29] J. Singh, J. Bacon, J. Crowcroft, A. Madhavapeddy, T. Pasquier, W. K.
Hon, and C. Millard, “Regional Clouds: Technical Considerations,” Uni-
versity of Cambridge, Tech. Rep. UCAM-CL-TR-863, 2014. [Online].
Available: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-863.pdf

[30] J. Singh, T. Pasquier, J. Bacon, and D. Eyers, “Integrating Middleware
with Information Flow Control,” in International Conference on Cloud
Engineering (IC2E). IEEE, 2015.

[31] D. Schoepe, D. Hedin, and A. Sabelfeld, “SeLINQ: Tracking Informa-
tion Across Application-Database Boundaries,” in 19th ACM SIGPLAN
international conference on Functional programming. ACM, 2014,
pp. 25–38.

[32] T. F. J.-M. Pasquier, J. Bacon, and B. Shand, “FlowR: Aspect Oriented
Programming for Information Flow Control in Ruby,” in 13th Interna-
tional Conference on Modularity. ACM, April 2014.

[33] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information Flow Control for Standard OS Abstrac-
tions,” in 21st ACM Symposium on Operating Systems Principles, 2007,
pp. 321–334.

[34] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing Dis-
tributed Systems with Information Flow Control,” in 5th USENIX
Symposium on Networked System Design and Implementation, 2008,
pp. 293–308.

[35] A. Alghothami and F. Kammuller, “Network Information Flow Control:
Proof of Concept,” in Systems, Man, and Cybernetics (SMC), 2013 IEEE
International Conference on, Oct 2013, pp. 2957–2962.

[36] Y. Mundada, A. Ramachandran, and N. Feamster, “Silverline: Data and
network isolation for cloud services,” Proc. of HotCloud, 2011.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2527951
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2527951
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-863.pdf

	Introduction
	Background and Related Work
	IFC Models & Implementations
	The need for IFC in Cloud Computing
	Role Based Access Control

	Atomic Tag Model
	Enforcing Safe Flows via Labels
	Creation of an Entity
	Privileges for Managing Tags and Labels
	Creation and Privileges
	Separation of Duty (SoD) and Conflict-of-Interest (CoI)

	Motivating Use Cases
	Data Analysis
	Log Audit

	Two-Component Tag Model
	Changes to Flow Constraints
	Changes to Privileges
	Changes to Conflicts of Interest
	Compatibility with Single-Component Tags
	Is More General Tag Complexity Needed?

	Evaluation
	Conclusion and Future Work
	References

