Des réels aux flottants : préservation automatique de preuves de stabilité de Lyapunov

Olivier Hermant, Vivien Maisonneuve

14èmes journées Approches Formelles dans l'Assistance au Développement Logiciel

Bordeaux, 9 Juin 2015

Embedded Systems

An embedded system is a computer system with a dedicated function, within a larger mechanical or electrical system.

Constraints:

- Power consumption;
- Performance (RT);
- Safety;
- Cost.

Uses a low-power processor or a microcontroller.

Commonly found in consumer, cooking, industrial, automotive, medical, commercial and military applications.

Example

Quadricopter, DRONE Project, MINES ParisTech & ÉCP ⇒ Parrot AR.Drone.

ATMEGA128: 16 MHz, 4 KB RAM, 128 KB ROM

Control-Command System

Levels of Description

Formalization:

- System conception;
- Constraint specification;
- Physical model of the environment;
- Mathematical proof that the system behave properly.

MATLAB, Simulink

Realization: very low-level C program

- Thousands of LOC;
- Computations decomposed into elementary operations;
- Management of sensors and actuators.

GCC, Clang

How to ensure that the executed program is correct?

Stability Proof

Show that the system parameters are bounded during its execution.

Essential for system safety.

- Open loop stability: u_c bounded $\Longrightarrow x_c$ bounded (hence y_c bounded)
- Closed loop stability: y_d bounded $\implies x_c, x_p$ bounded (hence y_c, y_p bounded)

Stability Invariant

Linear invariants not well suited.

Quadratic invariants (ellipsoids) are a good fit for linear systems.

Lyapunov theory provides a framework to compute inductive invariants.

Static analysis to show that the invariant holds from source code.

Stability Invariant

Linear invariants not well suited.

Quadratic invariants (ellipsoids) are a good fit for linear systems.

Lyapunov theory provides a framework to compute inductive invariants.

Static analysis to show that the invariant holds from source code.

Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by binary, limited-precision values.

Floating point (IEEE 754):

Fixed point:

$$(-1)^{s} \times e + 2^{-24} \times m$$

Rationals using pairs of integers.

Numerical Precision

Lyapunov theory applies on a system with real arithmetic.

In machine implementations, numerical values are approximated by binary, limited-precision values.

- Constant values are altered;
- 2 Rounding errors during computations.
- ⇒ Stability proof does not apply, invariant does not fit.

How to adapt the stability proof?

```
[Feron ICSM'10]: mass-spring system.
```


Open-loop stability: x_c bounded.

Closed-loop stability: x_c, x_p bounded.

```
Ac = [0.4990, -0.0500;
       0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  yc = max(min(y - yd, 1), -1);
  \mathbf{u} = \mathbf{Cc} \times \mathbf{xc} + \mathbf{Dc} \times \mathbf{yc};
  xc = Ac*xc + Bc*yc;
  send(u, 1);
  receive(y, 2); receive(yd, 3);
end
```

Example System: Stability Ellipse

Lyapunov theory
$$\Longrightarrow x_{\scriptscriptstyle C} = \begin{pmatrix} x_{c_1} \\ x_{c_2} \end{pmatrix}$$
 belongs to the ellipse:

$$\mathcal{E}_P = \{ x \in \mathbb{R}^2 \mid x^T \cdot P \cdot x \le 1 \}$$
 $P = 10^{-3} \begin{pmatrix} 0.6742 & 0.0428 \\ 0.0428 & 2.4651 \end{pmatrix}$

$$x_c \in \mathcal{E}_P \iff 0.6742x_{c_1}^2 + 0.0856x_{c_1}x_{c_2} + 2.4651x_{c_2}^2 \le 1000$$


```
Ac = [0.4990, -0.0500;
       0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
 % x_c \in \mathcal{E}_P
  yc = max(min(y - yd, 1), -1);
 u = Cc*xc + Dc*yc;
  xc = Ac*xc + Bc*yc;
  send(\mathbf{u}, 1);
  receive(y, 2); receive(yd, 3);
 % x_c \in \mathcal{E}_R \subset \mathcal{E}_P
end
```



```
Ac = [0.4990, -0.0500;
      0.0100, 1.00001:
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280:
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
 % x_c \in \mathcal{E}_P
  yc = max(min(y - yd, 1), -1);
 u = Cc*xc + Dc*yc;
  xc = Ac*xc + Bc*yc;
  send(u, 1);
  receive(y, 2); receive(yd, 3);
 % x_c \in \mathcal{E}_P
end
```

Using limited-precision arithmetic:

```
Ac = [0.4990, -0.0500]
       0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  % x_c \in \mathcal{E}_P
  yc = max(min(y - yd, 1), -1);
  u = Cc*xc + Dc*yc;
  xc = Ac*xc + Bc*yc;
  send(u, 1);
  receive(y, 2); receive(yd, 3);
  % x_c \in \mathcal{E}_P
end
```

Using limited-precision arithmetic:

 Constant values are altered

```
Ac = [0.4990, -0.0500]
      0.0100, 1.0000];
!Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  % Xe EP
  yc = max(min(y - yd, 1), -1);
  u = Cc*xc + Dc*yc;
  xc = Ac*xc + Bc*yc;
  send(u, 1);
  receive(y, 2); receive(yd, 3);
  % X= EP
end
```

Using limited-precision arithmetic:

1 Constant values are altered $\Longrightarrow \mathcal{E}_P$ no longer valid:

```
Ac = [0.4990, -0.0500]
      0.0100, 1.0000];
!Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  % Xe EP
  yc = max(min(y - yd, 1), -1);
 u = Cc*xc + Dc*yc;
 xc = Ac*xc + Bc*yc;
  send(\mathbf{u}, 1);
  receive(y, 2); receive(yd, 3);
  % X= EP
end
```

Using limited-precision arithmetic:

- ① Constant values are altered $\implies \mathcal{E}_P$ no longer valid;
- 2 Rounding errors during computations.

```
Ac = [0.4990, -0.0500]
      0.0100, 1.0000];
!Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
receive(y, 2); receive(yd, 3);
while (1)
  % Xe EP
  yc = max(min(y - yd, 1), -1);
 u = Cc*xc + Dc*yc;
 xc = Ac*xc + Bc*yc;
  send(\mathbf{u}, 1);
  receive(y, 2); receive(yd, 3);
  % X= EP
end
```

Using limited-precision arithmetic:

- 1 Constant values are altered $\implies \mathcal{E}_P$ no longer valid;
- 2 Rounding errors during computations.

Adapt invariants.

Example System: Invariants

```
xc = zeros(2, 1);
% x_c \in \mathcal{E}_P
receive(y, 2); receive(yd, 3);
% x_c \in \mathcal{E}_P
while (1)
   % x_c \in \mathcal{E}_P
   yc = max(min(y - yd, 1), -1);
   x_c \in \mathcal{E}_P, \quad v_c^2 < 1
   \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}}, \quad Q_{\mu} = \begin{pmatrix} \mu P & 0 \\ 0 & 1-\mu \end{pmatrix}, \quad \mu = 0.9991
   u = Cc*xc + Dc*vc;
   \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{II}}
   xc = Ac*xc + Bc*yc;
   % x_c \in \mathcal{E}_R, \quad R = \left[ (A_c \ B_c) Q_u^{-1} (A_c \ B_c)^{\mathrm{T}} \right]^{-1}
   send(\mathbf{u}, 1);
   % x_c \in \mathcal{E}_R
   receive(y, 2); receive(yd, 3);
   % x_c \in \mathcal{E}_R
   % x_c \in \mathcal{E}_P
end
```

Example System: Invariants

$$\begin{array}{l} \% \ \, x_c \in \mathcal{E}_P, \quad y_c^2 \leq 1 \\ \% \ \, \left(\begin{array}{l} x_c \\ y_c \end{array} \right) \in \mathcal{E}_{Q_\mu}, \quad Q_\mu = \left(\begin{array}{l} \mu^P & 0 \\ 0 & 1-\mu \end{array} \right), \quad \mu = 0.9991 \end{array}$$

Theoretical Framework

 $Transpose\ code\ +\ invariants\ in\ two\ steps:$

Real

$$% d$$
 i
 $% d' = \theta(d, i)$

Theoretical Framework

Transpose code + invariants in two steps:

Code: constants converted into machine numbers

 $\begin{array}{l} \textbf{Invariants} \text{ recomputed using} \\ \textbf{the same propagation theorem} \\ \theta \end{array}$

```
Ac = [0.4990, -0.0500;
0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
...
```

Convert constants:

```
xc = zeros(2, 1);
% x_c \in \mathcal{E}_P
receive(y, 2); receive(yd, 3);
% x_c \in \mathcal{E}_P
while (1)
   % x_c \in \mathcal{E}_P
    yc = max(min(y - yd, 1), -1);
    x_c \in \mathcal{E}_P, \quad y_c^2 < 1
   \begin{pmatrix} \chi_c \\ V_c \end{pmatrix} \in \mathcal{E}_{Q_H}, \quad Q_\mu = \begin{pmatrix} \mu P & 0 \\ 0 & 1 - \mu \end{pmatrix}
    \mathbf{u} = \mathbf{Cc} \times \mathbf{xc} + \mathbf{Dc} \times \mathbf{yc};
   \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{II}}
    xc = Ac*xc + Bc*vc;
   % x_c \in \mathcal{E}_R, \quad R = \left[ (A_c \ B_c) Q_u^{-1} (A_c \ B_c)^{\mathrm{T}} \right]^{-1}
    send(\mathbf{u}, 1);
    % x_c \in \mathcal{E}_R
    receive(y, 2); receive(yd, 3);
    % x_c \in \mathcal{E}_R
    % x_c \in \mathcal{E}_P
end
```

In the rest of the code:

```
xc = zeros(2, 1);
% x_c \in \mathcal{E}_P
receive(y, 2); receive(yd, 3);
% x_c \in \mathcal{E}_P
while (1)
   % x_c \in \mathcal{E}_P
   yc = max(min(y - yd, 1), -1);
   x_{c} \in \mathcal{E}_{P}, \quad y_{c}^{2} < 1
   \begin{pmatrix} \chi_c \\ V_c \end{pmatrix} \in \mathcal{E}_{Q_H}, \quad Q_\mu = \begin{pmatrix} \mu P & 0 \\ 0 & 1 - \mu \end{pmatrix}
   \mathbf{u} = \mathbf{Cc} \times \mathbf{xc} + \mathbf{Dc} \times \mathbf{yc};
   \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{II}}
   xc = Acf*xc + Bcf*yc;
   % x_c \in \mathcal{E}_S, \quad S = [(A_{cf} \ B_{cf})Q_{ii}^{-1}(A_{cf} \ B_{cf})^T]^{-1}
    send(\mathbf{u}, 1);
   x_c \in \mathcal{E}_S
   receive(y, 2); receive(yd, 3);
  x_c \in \mathcal{E}_S
  x_c \in \mathcal{E}_P
```

In the rest of the code:

- A_c , B_c replaced by A_{cf} , B_{cf} ;
- R depends on A_c, B_c , replaced by S;
- Check if $\mathcal{E}_S \subset \mathcal{E}_P$.

Theoretical Framework

Transpose code + invariants in two steps:

Code: constants converted into machine numbers

 $\begin{array}{l} \textbf{Invariants} \text{ recomputed using} \\ \textbf{the same propagation theorem} \\ \theta \end{array}$

Theoretical Framework

Transpose code + invariants in two steps:

Code: constants converted into machine numbers

 $\begin{array}{l} \textbf{Invariants} \text{ recomputed using} \\ \textbf{the same propagation theorem} \\ \theta \end{array}$

Code: real functions +, *...
replaced by their machine
counterparts
Invariants enlarged to include
rounding error
Preserve invariant shape for
propagation

2 Replace functions:

```
\begin{array}{l}
\vdots \\
% \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q_{\mu}} \\
\text{xc} = \text{Acf*xc} + \text{Bcf*yc}; \\
% x_c \in \mathcal{E}_S, \quad S = \left[ (A_{cf} B_{cf}) Q_{\mu}^{-1} (A_{cf} B_{cf})^{\mathrm{T}} \right]^{-1} \\
\vdots \\
\vdots \\
\vdots
\end{array}
```

- Replace + and × by their FP counterparts;
- Increase \mathcal{E}_S to include arithmetic error.

 e_1, e_2 is the arithmetic error on x_{c_1}, x_{c_2} .

 $\mathcal{E}_T \supset \mathcal{E}_S$ is an ellipse s.t.:

$$\forall x_c \in \mathcal{E}_5, \ \forall x_c' \in \mathbb{R}^2,$$
$$|x_{c_1}' - x_{c_1}| \le e_1 \land |x_{c_2}' - x_{c_2}| \le e_2 \Longrightarrow x_c' \in \mathcal{E}_{\mathcal{T}} \quad (*)$$

 $\mathcal{E}_{\mathcal{T}}$ can be the smallest magnification of $\mathcal{E}_{\mathcal{S}}$ s.t. (*) holds.

```
\begin{array}{l} \dots \\ \% \begin{pmatrix} x_c \\ y_c \end{pmatrix} \in \mathcal{E}_{Q\mu} \\ \text{xc} = \text{Acf*xc} + \text{Bcf*yc}; \\ \% \ x_c \in \mathcal{E}_S, \quad S = \left[ (A_{cf} \ B_{cf}) Q_\mu^{-1} (A_{cf} \ B_{cf})^{\text{T}} \right]^{-1} \\ \text{send(u, 1);} \\ \% \ x_c \in \mathcal{E}_S \\ \text{receive(y, 2); receive(yd, 3);} \\ \% \ x_c \in \mathcal{E}_S \\ \% \ x_c \in \mathcal{E}_P \\ \text{end} \end{array}
```

In the rest of the code:


```
\begin{array}{l} \dots \\ % \left(\begin{smallmatrix} x_c \\ y_c \end{smallmatrix}\right) \in \mathcal{E}_{Q\mu} \\ \text{xc} = \text{Acf*xc} + \text{Bcf*yc}; \\ \% \ x_c \in \mathcal{E}_{\mathcal{T}} \\ \text{send(u, 1);} \\ \% \ x_c \in \mathcal{E}_{\mathcal{T}} \\ \text{receive(y, 2); receive(yd, 3);} \\ \% \ x_c \in \mathcal{E}_{\mathcal{T}} \\ \% \ x_c \in \mathcal{E}_{\mathcal{P}} \\ \text{end} \end{array}
```

In the rest of the code:

• Replace \mathcal{E}_{S} by \mathcal{E}_{T} ;


```
\begin{array}{l} \dots \\ \% \left( \begin{smallmatrix} x_c \\ y_c \end{smallmatrix} \right) \in \mathcal{E}_{Q\mu} \\ \text{xc} = \text{Acf*xc} + \text{Bcf*yc}; \\ \% \ x_c \in \mathcal{E}_{\mathcal{T}} \\ \text{send(u, 1);} \\ \% \ x_c \in \mathcal{E}_{\mathcal{T}} \\ \text{receive(y, 2); receive(yd, 3);} \\ \frac{1\%}{\%} \ x_c \in \mathcal{E}_{\mathcal{T}} \\ \frac{1\%}{\%} \ x_c \in \mathcal{E}_{\mathcal{P}} \\ \text{end} \end{array}
```

In the rest of the code:

- Replace \mathcal{E}_{S} by \mathcal{E}_{T} ;
- Check if $\mathcal{E}_T \subset \mathcal{E}_P$.

It works! \Rightarrow Stable in 32 bits. If not, cannot conclude.

Automation: The LyaFloat Tool

```
In Python, using SymPy.
from lyafloat import *
setfloatify(constants=True, operators=True, precision=53)
P = Rational("1e-3") * Matrix(rationals())
       ["0.6742 0.0428", "0.0428 2.4651"]))
EP = Ellipsoid(P)
xc1, xc2, yc = symbols("xc1 xc2 yc")
Ac = Matrix(constants(["0.4990 -0.0500", "0.0100 1.0000"]))
. . .
ES = Ellipsoid(R)
print("ES included in EP :", ES <= EP)</pre>
i = Instruction({xc: Ac * xc + Bc * yc},
       pre=[zc in EQmu], post=[xc in ES])
ET = i.post()[xc]
print("ET =", ET)
print("ET included in EP :", ET <= EP)</pre>
```

Closed Loop

Closed-loop system:

- Pseudocode for controller and for environment;
- send & receive;
- Only controller code is changed.

Does not work with 32 bits.

OK with 128 bits.

Related Work

Compute bounds from source code, open-loop case:

- Astrée;
- PhD P. Roux.

From pseudocode to C:

Feron ICSM'10.

Floating-point arithmetic:

PhD P. Roux.

Conclusion

Theoretical framework to translate invariants on code with real arithmetic, while preserving the overall proof structure.

LyaFloat: implementation for Lyapunov-theoretic proofs on floating-point arithmetic. Suitable method if bounded error.

Future work:

- **1** Other **arithmetic paradigms**:
 - OK with floating point: rounding error bounded for +, -, * if no extremal value;
 - Same for fixed point;
 - Not sure what happens with rationals;
- Other functions (non-linear systems):
 - Differentiable, periodic functions (cos);
 - Differentiable functions restricted to a finite range.
- 3 More formal guarantees: Coq rather than Python
 - formalization (or proof?) of propagators;
 - or generate Coq scripts.

Des réels aux flottants : préservation automatique de preuves de stabilité de Lyapunov

Olivier Hermant, Vivien Maisonneuve

14èmes journées Approches Formelles dans l'Assistance au Développement Logiciel

Bordeaux, 9 Juin 2015