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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract:!!The!concept!of!liquid!clocks!introduced!in!this!paper!is!a!significant!step!towards!a!more!precise!compile/time!
framework!for!the!analysis!of!synchronous!and!polychromous!languages.!Compiling!languages!such!as!Lustre!or!SIGNAL!

indeed! involves! a! number! of! static! analyses! of! programs! before! they! can! be! synthesized! into! executable! code,! e.g.,!

synchronicity!class!characterization,!clock!assignment,!static!scheduling!or!causality!analysis.!These!analyses!are!often!

equivalent!to!undecidable!problems,!necessitating!abstracting!such!programs!to!provide!sound!yet!incomplete!analyses.!

Such! abstractions! unfortunately! often! lead! to! the! rejection! of! programs! that! could! very! well! be! synthesized! into!

deterministic! code,!provided!abstraction! refinement! steps! could!be!applied! for!more!accurate!analysis.!To! reduce! the!

false! negatives! occurring! during! the! compilation! process,! we! leverage! recent! advances! in! type! theory! //! with! the!

definition!of!decidable!classes!of!value/dependent!type!systems!//!and!formal!verification,!linked!to!the!development!of!

efficient!SAT/SMT!solvers,!to!provide!a!type/theoretic!approach!that!considers!all!the!above!analyses!as!type!inference!

problems.!!

!

In! order! to! simplify! the! exposition! of! our! new! approach! in! this! paper,! we! define! a! refinement! type! system! for! a!

minimalistic,! synchronous,! stream/processing! language! to! concisely! represent,! analyse,! and! verify! logical! and!

quantitative!properties! of! programs! expressed! as! stream/processing!data/flow!networks.!Our! type! system!provides! a!

new!framework!to!represent!logical!time!(clocks)!and!scheduling!properties,!and!to!describe!their!relations!with!stream!

values! and,! possibly,! other! quantas.!We! show! how! to! analyze! synchronous! stream! processing! programs! à! la! Lustre,!

Signal)!to!enable!previously!described!analyzes! involved!in!compiling!such!programs.!We!also!prove!the!soundness!of!

our!type!system!and!elaborate!on!the!adaptability!of!this!core!framework!by!outlining!its!extensibility!to!specific!models!

of!computations!and!other!quantas.!

#
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Les horloges liquides 

 

Résumé#:!!Le!concept!d'horloges!liquides!introduits!dans!le!présent!document!est!une!étape!importante!vers!un!cadre!de!
compilation!de!plus!de!temps!précise!pour!l'analyse!des!langages!synchrones!et!polychromes.!Compilation!langues!tels!que!
Lustre! ou! SIGNAL! implique! en! effet! un! certain! nombre! d'analyses! statiques! de! programmes! avant! qu'ils! peuvent! être!
synthétisés!en!code!exécutable,!par!exemple,!la!synchronicité!classe!caractérisation,!missions!d'horloge,!ordonnancement!
statique! ou! l'analyse! de! la! causalité.! Ces! analyses! sont! souvent! équivalent! à! des! problèmes! indécidables,! nécessitant!
abstraction! de! tels! programmes! pour! offrir! un! son! encore! analyses! incomplètes.! Ces! abstractions! conduisent!
malheureusement!souvent!le!rejet!des!programmes!qui!pourraient!très!bien!être!synthétisé!dans!le!code!déterministe,!à!
condition!abstraction!étapes!de!raffinement!pourraient!être!appliquées!pour!l'analyse!plus!précise.!Pour!réduire!les!faux!
négatifs!qui!se!produisent!au!cours!du!processus!de!compilation,!nous!misons!sur!les!progrès!récents!dans!la!théorie!des!
types!/!avec!la!définition!des!classes!décidables!de!systèmes!de!type!dépendant!de!la!valeur!/!et!la!vérification!formelle,!liée!
au!développement!de!l'efficacité!des!solveurs!SAT!/!SMT,!à!fournir!une!approche!de!type!théorie!qui!considère!toutes!les!
analyses!ci/dessus!que!les!problèmes!d'inférence.!
!
Afin!de!simplifier!l'exposé!de!notre!nouvelle!approche!dans!le!présent!document,!nous!définissons!un!système!de!type!de!
raffinement!pour!un,!synchrone,! la! langue!minimaliste! flux!de! traitement!pour!représenter!de! façon!concise,!analyser!et!
vérifier!les!propriétés!logiques!et!quantitatifs!de!programmes!exprimées!en!flux!de!données!de!traitement!/Débit!réseaux.!
Notre! système! de! type! fournit! un! nouveau! cadre! pour! représenter! le! temps! logique! (horloges)! et! des! propriétés! de!
planification,!et!de!décrire! leurs!relations!avec! les!valeurs!des! flux!et,!éventuellement,!d'autres!quantas.!Nous!montrons!
comment! analyser! les! programmes! synchrones! de! traitement! de! flux! (à! la! Lustre,! Signal)! pour! permettre! décrit!
précédemment! analyses! impliqué! dans! l'établissement! de! ces! programmes.! Nous! prouvons! aussi! la! solidité! de! notre!
système!de!type!et!élaborons!sur!l'adaptabilité!de!ce!cadre!de!base!en!décrivant!son!extensibilité!à!des!modèles!spécifiques!
de!calculs!et!d'autres!quantas.!
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#

Mots#clés#:!théorie!des!types,!verification!de!programmes,!réseaux!flot/de/données,!systèmes!cyber/physiques!
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Abstract

The concept of liquid clocks introduced in this paper is a significant step towards a more precise compile-time
framework for the analysis of synchronous and polychromous languages. Compiling languages such as Lustre or
SIGNAL indeed involves a number of static analyses of programs before they can be synthesized into executable code,
e.g., synchronicity class characterization, clock assignment, static scheduling or causality analysis. These analyses are
often equivalent to undecidable problems, necessitating abstracting such programs to provide sound yet incomplete
analyses. Such abstractions unfortunately often lead to the rejection of programs that could very well be synthesized
into deterministic code, provided abstraction refinement steps could be applied for more accurate analysis. To reduce
the false negatives occurring during the compilation process, we leverage recent advances in type theory – with the
definition of decidable classes of value-dependent type systems – and formal verification, linked to the development
of e�cient SAT/SMT solvers, to provide a type-theoretic approach that considers all the above analyses as type
inference problems.

In order to simplify the exposition of our new approach in this paper, we define a refinement type system
for a minimalistic, synchronous, stream-processing language to concisely represent, analyse, and verify logical and
quantitative properties of programs expressed as stream-processing data-flow networks. Our type system provides
a new framework to represent logical time (clocks) and scheduling properties, and to describe their relations with
stream values and, possibly, other quantas. We show how to analyze synchronous stream processing programs (à
la Lustre, Signal) to enable previously described analyzes involved in compiling such programs. We also prove the
soundness of our type system and elaborate on the adaptability of this core framework by outlining its extensibility to
specific models of computations and other quantas.
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I. Introduction
A cyber-physical system is an entity of heterogeneous constituents: software, embedded in hardware,

interfaced with the physical world. Time takes di↵erent forms when observed from each of these viewpoints:
continuous in physics; discrete and event-based in software; time-triggered in hardware. Moreover, modelling
and programming paradigms used to represent time in software (synchronous), hardware (RTL, TLM) or
physics (ODEs) significantly alter the perception of time. On top of that, heterogeneous timing constraints
need not only be mitigated across system components, but so do all relations in time of its other quantas
and metrics: speed, frequency, size, throughput, volume, pressure, capacity, heat, angle, . . .

Designing robust control for cyber-physical systems is a challenging problem for control system engineers.
Designing resilient control systems for today’s power plants, automotive dynamics, or avionics, are problems
that are solved mathematically, simulated in MATlab/Simulink, or similar tools, for validation, and then
implemented in software by engineers. The process of going from the mathematical equations to software
implementation is often error prone, hence the considerable research over the last two decades on automated
code synthesis from formal specifications of control algorithms.

Given that control algorithms are equational, to capture the computation involved, data-flow-oriented formal
languages such as Kahn networks, Lustre, Signal, SDF (Synchronous Data-Flow) have been proposed in the
late 80s [3], [12–14]. Synchronous data-flow-oriented formal languages di↵er from other data-flow languages
in that they are based on the “synchronous hypothesis”, which requires that computation be performed as
a sequence of reactions to inputs taken from multiple streams of inputs. These input streams are usually
either sampled values of physical quantities measured from the physical system under control, or events
generated from other parts of the control system such as interrupts, completion signals, acknowledgements,
timer signals.

One major di↵erence between languages like SDF, Lustre and Signal lies in the underlying model of time.
Even though both adhere to the synchronous hypothesis, they di↵er in how reactions are ordered, and hence
in how reaction time boundaries are formed. In SDF and Lustre, reactions are totally ordered, and form
the necessary artefact to create the reaction boundaries, namely ‘clocks’ have to satisfy certain constraints
which are checked at compile time. The notion of ‘clock’ in a data-flow language captures how data/events
streams participate in the reactions.

For example, if the temperature temp of a boiler is sampled (from the wire/stream of its sensor
temperature_sensor) during every reaction (when check) to compute an actuation, whereas the pressure
is only sampled when the temperature falls below a certain threshold, then the ‘clock’ of the stream
of temperature values is faster than (or equal to) the check condition of the stream of pressure values.
Moreover, the two clocks are conditionally related by the condition “temp < threshold”. In Signal, the
timing model being polychronous, the di↵erent streams may have non-synchronized clocks, thus giving rise
to a partial order relation among them.

temp = temperature_sensor when check

| sample = true when temp < threshold

| pressure = pressure_sensor when sample

The compilation problem of data-flow syn/poly-chronous languages thus involves a ‘clock calculus’ which,
in the case of Lustre, amounts to checking that all clocks are related to a main one from which ‘activation’
of every computation is derived [12].

In the case of Signal, this becomes the more general issue of finding, first, if such a main clock exists [2],
and, second, how others relate to it. If this is the case, then the program is said ‘endochronous’ [15], and
sequential code can be synthesised from the analysed program, provided that, within each reaction, no cyclic
data dependency exists. This is the case above, as temp is a sample of check (it is defined when stream
check is true), temp is synchronous to sample (it is defined at the same times) and pressure samples
sample.

check <=> clk (temp)

| clk (temp) <=> clk (sample)

| sample <=> clk (pressure)
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If no main clock exists, then each equation or sub-program may still execute separately, as a concurrent
thread. In that case, reaction loops may still be synthesised with deterministic synchronisations between them.
Such a program is said patient, confluent, or ‘weakly endochronous’ [24], meaning that the synchronous or
asynchronous composition of its equations have the same meaning.

While Lustre is, from the above, better sensed as the synchronous abstraction of sequential programs
(that are generated from it), Signal’s model of time is better understood as an abstraction, or specification,
of a globally asynchronous network of locally synchronous programs. All these problems of establishing
endochrony and cycle-freedom are all undecidable: they depend on relations between static clocks, e.g.
pressure, and dynamic values, e.g. sample (hence the integer temp). However, they can be solved
in most practical cases, by abstract reasoning on Boolean relations (i.e., by abstracting the relation
sample <=> temp < threshold as above). The set of programs for which these problems are decidable
can be extended if we have at our disposal decision algorithms for more elaborate theories, and thus both
dependent types, to specify or infer invariants, and Satisfiability Modulo Theories (SMT) solvers, to verify
or validate invariants, come in handy.

However, so far, such SMT solver-based extensions of program synthesis have been kludged into
the implementation of synthesis engines by adding these decision algorithms into the ‘clock calculus’
component [9], [23]. This entire process of static analysis, capturing program properties in a logic with
suitable decision procedures, is the crux of extending synthesis techniques to quantitative specifications. In
this paper, instead of integrating time and quantitative reasoning at the implementation level of the synthesis
engine or defining specific type systems to represent each of its logical, quantitative or causal aspect [4], [8],
[18], we propose a generic type theory based on refinement types to integrate this ability into the language’s
static semantic itself and improve synthesisability of programs from its data-flow specifications [9], [23].
The advantage of doing that is manifold, but, most importantly, the type inference algorithms themselves
will also decide synthesisability.

We adopt the liquid type theory introduced by Jhala et al. [27], [32], [35], [36] to apply and extend it to
the context of timed data-flow languages by the introduction of properties on time and causality: the theory
of liquid clocks.

Capturing quantitative properties of timed data-flow specifications, in a decidable manner, using liquid
types, opens to a variety of applications, from the integration of contract systems, the traceability of program
properties from specification to generated code, to translation validation and certified code generation.
Moreover, liquid types allow to revisit many of the ad-hoc and problem-specific algebras and/or type theories
that have been proposed to capture many variations of the strictly synchronous hypothesis of Lustre using
periodic, multi-rate, a�ne, regular, integer, cyclo-static, continuous time models, all into one single, unified,
verification framework. Liquid types also open to considering a large variety of models of computation and
communication, not only synchronous and polychronous data-flow in the spirit of SDF, Simulink, Lustre and
Signal, but also multi-rate, cyclo-static, data-parallel models of computation and communication (MoCC)
(Appendix VIII-A).
Outline Section II starts with the presentation of a generic data-flow language to describe the network
structuring cooperating stream functions. We use a simple, first-order, functional syntax to describe this
language. Section III defines liquid types and clocks and Section IV presents our refinement type inference
system. A constructive dynamic semantics of the language is given in Section V for the purpose of stating a
subject reduction property, Section VI. Section VIII extends our data-flow language with primitives that
implement the MoCC of synchronous data-flow languages like Lustre and Signal. In this context, we formulate
safety-critical properties of determinism and deadlock-freedom by means of an interpretation of liquid types.
Section IX addresses the related work before the conclusion. The appendix contain materials from the
complete version of this paper, available as a technical report [31] and for readers perusal. Appendix VIII-A
hints on extensions of our liquid clock system to a�ne data-flow graphs, cyclo-static data-flow networks,
high-performance data-parallel networks, real-time calculi. Appendix A gives the proof of subject reduction
of the type system.
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II. A simple data-flow language
This section presents a minimalistic data-flow language, yet of su�cient expressive capability to manipulate

discrete streams of timed events. It takes the form of a lambda-calculus over stream functions. An equation
x “ y ‹ z defines the stream x by the repeated application of the operator ‹ on values incoming from y and
z. It usually requires the availability of a value along y and z before performing the operation that defines x.
Such an occurrence is called an event of x and its repetition a clock, x̂.
Example We consider a simple numerical simulation program similar to the bathtub example of [9]. In the
tank simulation model below, a faucet is actioned when stream up is active, thus filling the tank up, while
a pump dumps water when stream down is active. The diff of these two actions modifies the previous tank
level to yield a new one, which is output. Here, for instance, the stream equation output = level + diff
awaits a value from the input streams level and diff to define one on the output stream. All three
streams are said synchronous: they are defined by the same events which logically relate them in time. All
five equations that define the tank are meant as simultaneous. The execution of tank amounts to choosing
a value of its defined output streams from the values available from its input streams in a way that satisfy
the equations.

Special stream functions like pre, when and merge are used to delay, sample or merge streams: they
primarily manipulate concurrency and time (relations between streams in time). Hence, their meanings
greatly di↵er from one dialect to another, as they are specific to the model of time or concurrency (synchrony,
polychrony, asynchrony) that underlies the dynamic semantic of the language.

l e t tank (up, down) =

l e t output = level + diff

| diff = faucet - pump

| level = output pre 1

| faucet = (faucet pre 0) + (1 when up)

| pump = (pump pre 0) + (1 when down)

in output

They all, however, have similar intended use. For instance, above, pre defines a one-time delay:
faucet pre 0 initially returns 0 (the first time faucet is defined). Then it returns the previous value of
faucet. The alarm, below, is raised when either scarce or overflow is signaled. It is the merge of two
input streams. A sensor calculation error is signaled when both are. It is a sample of a stream (a constant
stream, true) by one or several conditions.

l e t alert (level) =

l e t overflow = true when level >= 9

| scarce = true when 0 >= level

| alarm = scarce merge overflow

| error = true when scarce when overflow

in (alarm, error)

Expressions From now on, an expression e defines a network of stream functions build from definitions d.
An expression can reference a stream x, apply it to a function expression e x or add a local definition d in
the scope of e with let d in e. A definition d is either a (non-recursive) function f pxq“e that parameterises
the expression e over x, or the simultaneous composition of (possibly recursive) equations x“e to locally
define the output of e by x.

e ::“ x stream
| e x application
| let d in e definition

d ::“ f pxq“e function
| x“e equation
| d || x“e composition

Meta-variables used in the grammars and rules follow some naming conventions. Streams are noted x, y, z
and sometimes c, n if they hold a constant value (a Boolean, an integer). Operators, seen as stream functions,
or processes are written f . The constant identifier pq stands for void.
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Pairing Function alert uses pairs: (alarm, error). Pairs do not define new streams, they just bundle
streams. We write fst px, yq and snd px, yq (or px, yq1 and px, yq2) to respectively designate the streams x and
y of a pair px, yq. This allows us to use simple pattern matching by identifying �px, yq.e to �x.�y.e and
let px, yq “ e1 in e2 to let z “ e1 in let x “ z1 || y “ z2 in e2 for a z not free in e1,2.

e ::“ . . . | px, yq | fst x | snd x pair expression
d ::“ . . . | px, yq“e pair definition

Data-types As in related works, we assume expressions e decorated with explicit type polymorphic
annotations obtained from classical Hindley-Milner type inference. As usual, we write ⇤↵.e to bind the
scope of a data-type variable ↵ to an expression e and erbs to instantiate it. Similarly, a function definition
f px :bq“e is decorated with the data-type of its parameter.

e ::“ . . . |⇤↵.e | erbs typed expression
d ::“ . . . | f px :bq“e typed definition

III. Liquid Types
The type system for stream functions defines three classes of types for data, noted b, streams, noted s,

and program objects, noted t. A data-type b can be void, a Boolean, an integer, or a type variable ↵ that
must be defined in the lexical scope of its occurrence. A stream value variable is noted ⌫ and denotes the
output of primitive operators on streams. A stream type s is a data-dependent type structure consisting of a
value identifier ⌫, a base type b and a property p of ⌫. Streams are first-order objects (they do not carry
functions).

A liquid type t is either a stream s, the bundle of a type t and another stream s, or a function x : s Ñ t.
The notation @↵.t allows to define a universally quantified type variable ↵ in the scope of t. The liquid type
x : s Ñ t of a function associates a property to the type of its parameter s and its result (a program object t).
For instance, the type x : int Ñxy : int | y • xy Ñx⌫ : int | ⌫ • yy denotes a function that maps an integer x to
a function that, first, expects its argument y to be greater or equal to x and, second, yields a result greater
than y.

Finally, a type environment E is a set registering declared type variables and relating stream, bundle and
function names to types. We note E, px : tq, resp. E,↵, for the extension of E with a name x. It is important
to remind that E, px : tq is defined i↵ x R dompEq, resp. ↵ R E.

b ::“ () | bool | int |↵ data-type
s ::“ x⌫ :b | py stream

E ::“ rs | E, px : tq | E,↵ context

t ::“ s stream
| t ˆ s bundle
| @↵.t variable
| x : s Ñ t function

Logical Qualifiers Properties p and atomic logical qualifiers q are defined on the quantifier-free logic
of uninterpreted functions and linear arithmetic (QF-EUFLIA or EUFA for short) amenable to automatic
verification using, e.g., satisfaction-modulo-theory or theorem proving [20]. Properties are limited to the
conjunction of and implication (or equivalence) between qualifiers q, in Q. A liquid type always holds a
property p (of type boolean) in conjunctive form: p is a conjunctive logical qualifier. We chose to limit
properties p to conjunctions and equivalences in order to greatly reduce the size of annotations in programs
and facilitate e�cient subtyping (to find the greatest implication of a set of clauses that abstract a local
variable). Our preliminary experiments show that one can handle many interesting use cases within this
limited framework.

p ::“ liquid refinement
| q qualifier in Q‹

| p ^ p conjunction
| p ñ p implication
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In the same manner as [36], qualifiers q are typed boolean formulas constructed by a grammar starting
from constants b (Booleans true and false), streams x, and unary and binary measures ‹. Measures ‹ are
uninterpreted boolean operators and integer operators. The clock operator x̂ will be of particular interest
in our context. It stands for the symbolic or arithmetic period of data on a stream x. It can be a boolean
here or an integer (see Section VIII-A), depending on the model of time under consideration. Another
peculiarity is the distinction between causal (non-reflexive) input-output stream equality, noted x“q, and its
implied reflexive (a-causal) logical equality x ““ q. Both are only distinguished from, explained and used
in Section VIII.

q ::“ ⌫ | ‹ q | q ‹ q qualifier
‹ ::“ measure

| ˆ clock
| ^ | | ñ | boolean
| ˆ | ` | ´ | † | § | “ | ““ integer

IV. Type inference
The proposed type inference system is defined in the spirit of Razou et al. [36] and extended the specification,

inference and verification of timed, or clocked, properties. We do not need to use polymorphism at all since
all process types are data parameter-dependent; defining the appropriate model and type inference algorithm
becomes this way a lot easier, while providing little limitations for our application domain.
Intrinsic stream functions The typing judgment E $ ‹ : t for intrinsic functions ‹ is very much in the
spirit of related work in synchronous programming as to its logical, timed and arithmetic properties [5],
[9], [27]. In the remainder, we use the following abbreviations to designate liquid types in which a value
variable ⌫ isn’t used or when its scope is not ambiguous.

b Ÿ“ ⌫ :b Ÿ“x⌫ :b | truey bxpy Ÿ“x⌫ :b | py
Intrinsic functions ‹ are all synchronous. An intrinsic expression/definition x “ y ‹ z requires its input and
output streams x, y, z to be present at the same time: it repeatedly pulls values from input streams, computes
a result and pushes it on the output stream. This yields two timing invariants. First, the clocks of x, y, z
must be true at the same time: x̂ ô ŷ ñ ẑ. Second, the value of the output stream is defined only if its
clock is present: x̂ ñ x “ y ‹ z.

E $ true:x⌫ :bool | ⌫̂ñ ⌫y E $ false :x⌫ :bool | ⌫̂ñ  ⌫y
E $ not : x :bool Ñx⌫ :bool | px̂ ô ⌫̂q ^ v̂ ñ p⌫ “  xqy
E $ and: x :bool Ñ y :bool Ñ

x⌫ :bool | px̂ ô ŷ ô ⌫̂q ^ v̂ ñ pv “ x ^ yqy
E $ or : x :bool Ñ y :bool Ñ

x⌫ :bool | px̂ ô ŷ ô ⌫̂q ^ v̂ ñ pv “ x _ yqy
E $ iff : x :bool Ñ y :bool Ñ

x⌫ :bool | px̂ ô ŷ ô ⌫̂q ^ v̂ ñ pv “ x ô yqy
All Boolean and arithmetic intrinsic functions are typed according to that schema to define timed extensions
of liquid types for all intrinsic operators. Finally, Boolean and integer constants are lifted to constant streams
carrying the specified value. Clocks can be made explicit in the language by the stream function clk.

One subtlety regards the signature of the logical “or” operation. We arguably chose to qualify the value
of the disjunction operator by the predicate ⌫ “ px _ yq, since x _ y is, in this scope, a qualifier and hence
can be considered an uninterpreted function. A similar reasoning is applied to integer stream functions.

E $clk : x :b Ñxv :bool | v “ x̂y
E $n :x⌫ : int | ⌫̂ñ p⌫ “ nqy
E $ plus: x : int Ñ y : int Ñx⌫ : int | px̂ ô ŷ ô ⌫̂q ^ v̂ ñ pv “ x ` yqy
E $mod: x : int Ñxy : int | y ° 0y Ñ

x⌫ : int | px̂ ô ŷ ô ⌫̂q ^ v̂ ñ pv “ x mod yqy
E $pos : x : int Ñx⌫ :bool | p⌫̂ô x̂q ^ v̂ ñ pv “ px • 0qqy
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Example The axioms defined so far give an intuition on what the type of tank should be. output and
level could, hypothetically, be associated with a type that would literally quote their definition. After all,
these properties are supposed to be uninterpreted functions. But this immediately raises three issues, that
will be addressed in the next few sub-section thanks to refinement types.

E $ output:xv : int | v̂ ô ˆlevel ô ˆdiff ^ v̂ ñ v “ level ` diffy
E $ level :xw : int | ŵ ô ˆoutput ^ v̂ ñ v “ output “pre” 1y

First, notice that the property of output is defined via the local variable level. We could existentially
quantify the type of tank over it, but this would make type inference undecidable. Refinement types provide
a solution to that, by commanding to approximate the properties of tank by that of a prime implicant that
only mentions the output: it is a reduction or abstraction method. In the case of tank, without knowledge
on up and down, we need to conclude true, the largest property.

E $ tank : up :bool Ñ down :bool Ñxv : int | truey
Second, notice that the property of output is recursively defined with that of level. The resolution of such
a constraint requires monotonic fixed-point resolution techniques using abstract interpretation on polyhedra,
which are defined by the composition of numerical inequalities [5], [9], [21].
output = level + diff | level = output pre 1

Third and last, notice that level is “initially” defined by 1 and, “otherwise”, by the “previous” value of
output. Again, “initially”, “otherwise” and “previous” refer to individual events, and we cannot quantify
our formula over these. Instead, we will need, again, to find a prime implicant that approximates them.
Pairing functions By contrast with other intrinsics, pairing does not create a new stream: it bundles two
streams together to form a larger wire or plug. It is more a network-building function than a stream function.
It accepts two streams which it bundles into a type t. Conversely, the first and second streams of a pair
reference its constituants. As in a dependent type system, name substitution does the rest to track each
individual stream properties.

pair : x : s Ñ y : t Ñ s ˆ t fst : x : s ˆ t Ñ s snd : x : s ˆ t Ñ t

Well-formed types The notions of well-formedness and sub-typing play key roles to tackle the issues raised
in the examples of the previous section. In a refinement type system, types are subject to the well-formed
relation E $ tX. Its role is crucial. First, it ensures type-consistency of properties generated during type
inference. For instance, the rule for stream types x⌫ :b | py applies the type inference rules to check that a
property has a Boolean type. Second, it ensures proper lexical scoping of terms during type inference.

By using it, the abstraction of qualifiers is strictly enforced once a term escapes the scope of its definition,
just as our examples required previously. Abstraction, or reduction, is formalised using the sub-typing
relation in the next section. The property of well-formedness extends to type environments E.

E $ ()X E $ boolX E $ intX ↵ P E
E $ ↵X

E,↵ $ tX
E $ @↵.tX

E $ sX E, x : s $ tX
E $ px : sq Ñ tX

E, ⌫ :b $ p :bool

E $x⌫ :b | py X
E $ sX E, x : s $ F X

E $ x : s, F X
E $ tX E, f : t $ F X

E $ f : t, F X
E,↵ $ F X
E $ ↵, F

In the base rule for stream types x⌫ :b | py X, we assume that p is well-typed with E, ⌫ :b $ p :bool. This
means that we interpret property p as a Boolean expression e check that it does not contain any variable
free in the scope of E and ⌫, and that the operation it is composed are of correct arity and type.
Sub-typing The abstraction, or reduction, of inferred properties is performed by using sub-typing. We use
the sub-typing relation for liquid types defined in [36] to restrict ourselves to a type system decidable in the
QF-EUFLIA theory. The sub-typing rule for streams, Rule (S-SIG), makes use of the logical interpretation
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p|p|q of a property p (see below) to convey the expected definition that p|E $ s ® t|q ñ p|E|q ñ p|s|q ñ p|t|q is
a tautology. The logical meaning of a property p is noted p|p|q. As in [36], it is interpreted as a formula in
the QF-EUFLIA theory, in order to facilitate SAT/SMT checking (|ù q indicates that q is a tautology).

E $ b ® b (S-BAS)
|ù p|E, ⌫ :b|q ñ p|p|q ñ p|p1|q

E $x⌫ :b | py ® x⌫ :b | p1y (S-SIG)

Logical interpretation p|t|q is defined by induction on the structure of types and environments as the interpreted
conjunction of properties implied by the meaning of a type t. We write prx{vs for the substitution of v by x
in p, and tt denotes the true value.

p|↵|q ñ tt
p|xv : b | py|q ñ p

p|x :xv : b | py|q ñ prx{vs
p|x : s ˆ t|q ñ p|x1 : s, x2 : t|q

p|x : s Ñ t|q ñ tt
p|E, x : t|q ñ p|E|q ^ p|t|q

Example Applied to the case of tank, using sub-typing algorithmically amounts to reducing our problem
to one of constraint satisfaction. We can easily express the type of output as the solution to the set of
constraints implied by its definition. Properties “variables” should be calculated from level plus faucet
minus pump, and level itself by output or 1. But we can’t say “or” in a conjunctive logic. Instead we need
to approximate the output. For convenience in the example, let us name v1 the value type of the “previous”
v and vx for the value type of x and px for its property. We should for instance infer constraints such as

E $ faucet :xv f : int | pf y s.t. pf ñ up ñ v f “ v1
f ` 1

E $ faucet

1: xv1
f : int | p1

f y s.t. v1
f “ 0 ñ p1

f ^ pf ñ p1
f

Still, without knowledge on up and down, the approximation yields a very conservative result: E $ faucet :
xv f : int | v f • 0y, E $ pump :xvp : int | vp • 0y and E $ output :xvp : int | truey. A better solution is, in the next
example, to combine the definition of the talk with that of the up and down buttons.
Inference system We can now put well-formedness and sub-typing to work for type inference. The type
inference system inductively defines the relation E $ e : t on expressions. Its co-inductive relation E $ d : F
associates a definition d with an environment F under the assumptions E. Structural rules are defined first.
Rule (T-FUN) simply references the type t of a named function f . Rule (T-SIG) defines a value stream v
from a reference to the named stream x. It hence binds the clock and value of v and x together.

Rules (T-GEN) and (T-INST) respectively bind and instantiate an explicit type variable ↵ as a placeholder
for a data-type b. We write trs{↵s for the substitution of ↵ by s in t. Sub-typing is allowed at any time during
type inference, by using Rule (T-SUB), but requires the production of a well-formed type t1 with respect to
the parent environment E. Beta-reduction expressions for application and scoping operate di↵erently. Rule
(T-APP) defines the type of the application e y of a stream y to a function e by returning its result type t,
and by substituting the name of its formal parameter x by that of the actual, y, noted try{xs. Streams x and
y must have the same type s.

E, f : t $ f : t (T-FUN)

E, x :xv :b | py $ x :xv :b | x̂ ô v̂ ñ v “ xy (T-SIG)

E,↵ $ e : t ↵ R E
E $ ⇤↵.e : @↵.t (T-GEN)

E $ e : @↵.t E $ sX
E $ erss : trs{↵s (T-INST)

E $ e : t E $ t ® t1 E $ t1X
E $ e : t1 (T-SUB)

E $ e : px : sq Ñ t E $ y : s
E $ e y : try{xs (T-APP)
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Rule (T-LET) handles the local definition of d in e. First, the type of d must be inferred. It is an environment
F listing the type of all names defined by d. This environment is then used with E to determine the type t
of e and return it. However, since t must escape the scope of d, we have to ensure that t does not reference
a name introduced in F, hence check that it is well-formed with respect to E: E $ tX.

The rule for definition uses the type inference relation E $ e : t to associate names x defined in equations
x“e to the corresponding type environment px : sq, in Rule (T-DEF). Rule (T-COM) composes them. Rule
(T-ABS) is that of lambda-abstraction. It chooses a type bxpy for the formal parameter x and deduces the
type t of its body e. Because the property p is “chosen”, the resulting function type must be well-formed
with respect to E.

E, F $ d : F E $ F X E, F $ e : t E $ tX
E $ let d in e : t (T-LET)

E $ e : s
E $ x“e : px : sq (T-DEF)

E $ d : F E $ x“e : F 1
E $ d || x“e : F, F 1 (T-COM)

E $ x :bxpy X E, x :bxpy $ e : t
E $ f px :bq“e :p f :px :bxpyq Ñ tq (T-ABS)

Example Let’s merge functions tank and control by the equation output = tank (control (output pre 1)),
we get

l e t output = level + diff

| diff = faucet - pump

| level = output pre 1

| faucet = (faucet pre 0) + (1 when up)

| pump = (pump pre 0) + (1 when down)

| down = level >= 7

| up = level <= 4

in output

Implementing the iterative fixed-point reasoning on local streams mentioned in our previous example yields
the observations that:

‚ faucet and pump are positive integers;
‚ but up and down alternate;
‚ increments of faucet and pump alternate;
‚ the di↵erence between faucet and pump is at most one.

Based on that, one can deduce the type of output to be xv : int | 0 § v § 8y and, using our type inference
system, collect its relations with local streams from a proof tree to finally check its validity using an SMT
solver [20]. A possible improvement to this dummy example could additionally be to bind faucet and
pump by a maximum throughput, e.g., 10.

V. Constructive semantics
We consider the constructive, small-step, reduction semantics of [30] to describe the behaviour of data-flow

networks. Its key feature is to embed a set of stream statuses, e.g. unknown, absent, present, inconsistent,
into a lattice of data values V “ B Y Z: the domain D “ V Y t?,K,J, u of statuses. Statuses have the
following meaning: ? stands for unknown, K for absent or inhibited, J for present or activated, and  for
inconsistent. We write VK “ V Y tKu for the set of final stream statuses. Starting from D, we define a
partial order Ñ on Dˆ D: the greater a status is, the more information we have about it. In [30], status  
is the greatest element. We will not make use of it here: transition from a status to inconsistent will instead
block. For all v P V, one has the relations

? Ñ K Ñ  and ? Ñ J Ñ v Ñ  
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The reduction of an expression e or definition d is defined by a monotonic progress rule r, d á r1, d1 that
defines all legal transitions that gain knowledge from r, d by evolving into r1, d1. Its parameter r, the registry,
associates stream variables x to statuses � P D. A registry is defined by a function r P X fiÑ D from a finite
set of stream names x in X to statuses in D. The step relation á iteratively gains knowledge about the
status of the stream variables defined in its domain domprq.
Example The execution of tank is started from a registry knowing the status of input streams, e.g.
pu, ttq, pd, ff q, but none of the statuses of its local and output streams (noted pi, ?q, pl, ?q, p f , ?q, pp, ?q, po, ?q).
It is triggered by the environment of the function, which delivers values to its input streams up and down
(noted, pu, ttq, pd, ff q). One first determines which synchronous streams must be present and computed: all
are; and which must remain absent: none must. Then, the level can be fetched (initially 1). Same for the
pump, initially 0, and the faucet, 0 ` 1 because up is true. Hence the output, 2. The output, faucet and pump
values p2, 0, 1q are finally stored in the registry in place of the initial values p1, 0, 0q for reuse at the next
run.

l e t output = level + diff

| diff = faucet - pump

| level = output pre 1

| faucet = (faucet pre 0) + (1 when up)

| pump = (pump pre 0) + (1 when down)

in output

pu, ttq, pd, ff q, p�, ?q, pl, ?q, p f , ?q, pp, ?q, po,Jq
á pu, ttq, pd, ff q, pi,Jq, pl,Jq, p f , ?q, pp, ?q, po,Jq From 2
á pu, ttq, pd, ff q, pi,Jq, pl,Jq, p f ,Jq, pp,Jq, po,Jq From 3
á pu, ttq, pd, ff q, pi,Jq, pl, 1q, p f ,Jq, pp,Jq, po,Jq From 4
á pu, ttq, pd, ff q, pi,Jq, pl, 1q, p f , 1q, pp,Jq, po,Jq From 5
á pu, ttq, pd, ff q, pi,Jq, pl, 1q, p f , 1q, pp, 0q, po,Jq From 6
á pu, ttq, pd, ff q, pi, 1q, pl, 1q, p f , 1q, pp, 0q, po, 2q From 3
á pu, ttq, pd, ff q, pi, 1q, pl, 1q, p f , 1q, pp, 0q, po, 2q From 2

Reduction to equations Without loss of generality, we reduce our language of stream functions to the
scoped composition of synchronous (simultaneous) data-flow equations, seen as base definitions d. In the
remainder, base definitions are defined by the composition d || d of equations x “ y ‹ z built from intrinsic
and data-flow operators ‹ P tand, or, not, . . . u. The scope of a stream x is lexically bound to a definition d
by d{x, as in process calculi.

d ::“ x “ y ‹ z | d || d | d{x base definitions

The reduction of an expression e to its output x is written x “ e { d. It is recursively defined on the
structure of terms by connecting the result of an expression e to a virtual stream x that materialises its
continuation [rules (R-COM), (R-LET)]. We note dompdq, impdq and fvpdq the input, output and unbound
streams in d (dompdq “ fvpdqzimpdq). Obviously a function cannot be recursive hence (R-FUN) requires
f R fvpe1q.

y“e1 { d1 x“ let d in e{ d2

x“ let y“e1 || d in e{ pd2 || d1q{y (R-COM), y R impdq
y“e1 { d1 x“e{ d

x“ let y“e1
in e{ pd || d1q{y (R-LET)

x“per�y.e1{ f sq{ d
x“ let f pyq“e1

in e{ d (R-FUN), f R fvpe1q
x“pe1rz{ysq{ d
x“p�y.e1q z{ d

x“pe1rz{ysq e{ d
x“p�y.e1q z e{ d (R-APP)

A local function definition f is substituted by its anonymised definitions �x.e, Rule (R-FUN), and its
application is expanded (see Rules (R-APP)). This way, each sub-expression connects to the parent stream
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of its output to form a data-flow network of equations. Again, we write ery{xs for the substitution of a
name x by a term y in a term e. Reduction preserves typing and produces a definition d in static single
assignment (SSA) form: all local and output streams have exactly one definition.

Lemma 1 (Reduction preserves typing): If E $ e : s, x R dompEq and x“e{ d then E $ d : px : sq (and
d is SSA).
Scheduling equations Executing the composition of equations d || d1 consists of choosing a schedule of
transitions among its sub-terms d and d1 (see Rule (PAR)). A restriction d{x lexically binds the scope of
a local stream x to the definition d. Its determines a status ⌫ P VK of x starting from the initial unknown
status. This amounts to choosing a fixpoint á˚ of transitions in d.

r, d á r1, d1

r, d || d2 á r1, d1 || d2
r, d á r1, d1

r, d2 || d á r1, d2 || d1 (PAR)

pr, px, ?qq, d á˚ pr1, px, ⌫qq, d1

r, d{x á r1, d1{x (LET), x R domprq

Intrinsic operators The transition rule (op) of a ternary equation x “ y ‹ z relies on the relation á‹
to check progress from the current status rpy, z, xq of its inputs and outputs to an hypothetical triple of
statuses p⌫y, ⌫z, ⌫xq. If such a relation exists, a transition occurs and the status of px, y, zq is updated. We write
r Z px, vq to accumulate knowledge of x in r by pr Z px, vqqpxq “ rpxq \ v, where \ is the corresponding
lattice lub.

rpy, z, xq á‹ p⌫y, ⌫z, ⌫xq
r, x “ y ‹ z á r Z px, ⌫xq Z py, ⌫yq Z pz, ⌫zq, x “ y ‹ z

(op)

Let us first consider the case of a synchronous ternary equation x “ y and z, below. From the initial status
rpy, z, xq, there are three ways to progress: if one of the parameters is known to be absent, written K, then
the other parameters are deemed absent as well. A second case is when one parameter is known to be
present. In that case, the other must be present as well. The last case is when the values ⌫y, ⌫z P bool of the
inputs are known. The only choice is to set the output to ⌫y ^ ⌫z.

rpyq rpzq rpxq á
and

K ?{K ?{K K K K
?{K K ?{K K K K
?{K ?{K K K K K

rpyq rpzq rpxq á
and

J ?{J ?{J J J J
?{J J ?{J J J J
?{J ?{J J J J J
vy vz vx vz vy pvy^vzq

As a result of this transition table, one observes that information on absence or presence can possibly flow
from the output of an equation back to its inputs, and possibly inhibit or trigger other streams in its context.
We note ?{K (resp. ?{J) for either unknown ? or absent K (resp. either unknown ? or present J) and ⌫x for
any status ⌫x Ñ vy^vz.
Example From the above rules, we can define an operational semantics for clock synchronization. The
process x sync y only accepts streams x and y that have the same status, present with a value or absent, or
yield an error otherwise:

x sync y �“ pa “ px “ xq || b “ py “ yq || c “ pa “ bqq {abc

Suppose that both x and y are present. Then, the equations a “ px “ xq and b “ py “ yq evaluate a and b
to true. Therefore, c “ pa “ bq must be true as well. Now, suppose that both x and y are absent. Then, the
equations a “ px “ xq and b “ py “ yq must evaluate a and b to absent. Therefore, c “ pa “ bq must be
absent as well.
Streams operators The case of the delay equation x “ y pre v requires a specific rule (delay) to account
for the fact that its third argument is a constant v P D. Apart from this peculiarity, delay behaves like a
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synchronous operator:
rpyq, v, rpxq á

pre

p⌫y,w, ⌫xq
r, x “ y pre v á r Z px, ⌫xq Z py, ⌫yq, x “ y pre w (delay)

rpyq v rpxq á
pre

?{K v K K v K
K v ?{K K v K

rpyq v rpxq á
pre

?{J v J J v v
J v ?{J J v v
w v v w w v

The standard evaluation principle applies to downsampling equations x “ y when z. The rules for propagating
absence are the same. There is only one possible way to propagate presence, namely if the output value is
known. If the input z is false, then the output x is deemed absent regardless of y. Finally, there is only one
case where the output can have a value a P bool, namely when z is true and y equals a P D.

rpyq rpzq rpxq á
when

K ?{K ?{K K K K
?{K K ?{K K K K
?{K ?{K K K K K

rpyq rpzq rpxq á
when

⌫y ff ?{K ⌫y ff K
?{J ?{J J J tt J
⌫y tt ?{J ⌫y tt ⌫y

Prioritised merge x “ y default z does the opposite to sampling: its result x can only be ruled absent when
both inputs are absent. Contrarily to sampling, there are many ways to propagate presence (it is su�cient
that one argument is present): if y is present, then its value is forwarded to x; otherwise, if z is present,
then its value is forwarded to x. If both are absent, so is x. We note vy, vz P D for a value (of y, z), and tt, ff
for true and false.

rpyq rpzq rpxq á
default

?{K ?{K K K K K
K K ?{K K K K
⌫y J ?{J ⌫y J J

rpyq rpzq rpxq á
defaultJ ⌫z

?{J J ⌫z J
vy ⌫z

?{J vy ⌫z vy

K ⌫z
?{J K ⌫z ⌫z

Example Consider a countdown definition in equational form, with input stream n and output stream o.
Every time its execution is triggered, its purpose is to provide the value of a count along with its output
stream o. If that count reaches 0, the counter synchronizes with the input stream n to reset the count. The
local stream c is the current count, x its decrement, y the reset condition.

¨

˚̊
˚̋

c “ o pre 0
| o “ n default x
| x “ c ´ 1
| y “ true when pc “ 0q
| pq “ n sync y

˛

‹‹‹‚{c{x{y

The execution of the counter is depicted by a series of steps. Changes are marked with a bullet ‚. The
internal state x of the counter is underscored countx. Let us assume for now that the environment has
triggered execution of the program by furnishing the input stream n with the value 1 to start counting. This
allows us to determine the output o of the counter by the merge rule. Consequently, and from the delay
rule, the initial count 0 can be loaded into c and the new 1 is stored in place of it. Once c is known, x
can be decremented by the subtraction rule, and y be deduced by the sampling rule. We are left with the
synchronization constraint n sync y which, luckily, is true, as both n and y are present.

pc, ?q pn, 1‚qpo, ?q px, ?q py, ?q count0
ápc, ?q pn, 1q po, 1‚qpx, ?q py, ?q count0 from á

defaultápc, 0‚qpn, 1q po, 1q px, ?q py, ?q count1‚ from á
pre

ápc, 0q pn, 1q po, 1q px,´1‚qpy, ?q count1 from á
subápc, 0q pn, 1q po, 1q px,´1q py, tt‚qcount1 from á
whenápc, 0q pn, 1q po, 1q px,´1q py, ttq count1 from á
sync
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Let us continue with a second round of execution. Only now, the environment does not deliver a new count
and the status of all the streams is unknown. We therefore have to first use the trigger rule to start execution.
Here, the aim of the game is to do so in a way that allows all equations to execute. To find a winning
strategy, we can use the synchronization relations implied by the counter to determine which stream to
trigger.

From the delay, subtraction and merge equations, we can first deduce that c, o, and x are synchronous.
We assign them to an equivalence class V1 “ tc, o, xu which means that, as soon as one of them is known to
be present or absent, all the others have the same status. Next, there is an explicit synchronization constraint
between n and y, hence let V2 “ tn, yu. Now, since n is defined by a sampling of c, we can deduce n from
c, hence:

status of V1 “ tc, o, xu known ñ status of V2 “ tn, yu known

Therefore, setting either of c, o or x present should su�ce to determine the status of all other streams. Since
the value of o depends on x which depends on c, we set c present. From the rule of delay, this has the
e↵ect of loading the current state 1 of the count into c and setting the output o present.

We can now execute both the subtraction, setting x to 0, and the sampling, setting y to absent. Once we
know the status of y, we can set the status of n to absent as well by the synchronization rule. The output o
can now be determined to be x by the merge rule and, concurrently, its value can be stored as the new state
of the counter due to the delay equation.

pc,Jqpn, ?qpo, ?qpx, ?qpy, ?q, count1
ápc, 1‚qpn, ?q po,J‚qpx, ?q py, ?q count1 from á

pre

ápc, 1q pn, ?q po,Jq px, 0‚qpy, ?q count1 from á
subápc, 1q pn, ?q po,Jq px, ?q py,K‚qcount1 from á
whenápc, 1q pn,K‚qpo,Jq px, 0q py,Kq count1 from á
sync

ápc, 1q pn,Kq po, 0‚q px, 0q py,Kq count1 from á
defaultápc, 1q pn,Kq po, 0q px, 0q py,Kq count0‚ from á
pre

VI. Soundness of liquid clocks
The type environment E of an expression e defines the type of its registry r: it holds the type of all

stream variables defined in r. The status of a given stream x at all times is obtained by its clock x̂. When
looking at boolean models for clocks, we posit, by construction, that x̂ is true at a given point in time (a
time tag) i↵ x holds a value at the same relative stream point, or x is activated and holds x “ J.

Conversely, x̂ is false i↵ x does not carry a value (with respect to another stream’s time tag), denoted
x “ K; hence x̂ ô x ‰ K. In the remainder, all properties pertaining to values are guarded or conditioned
by properties on clocks (e.g., x̂ ô v “ x) to enforce stratified reasoning on boolean expressions.

Definition 1 (Type of registry): We say that E is a type environment for r, i.e. $ r : E, i↵ $ EX,
dompEq “ domprq and, for all x P domprq, Epxq “ xv :b | py and $ rpxq : b. In particular, $? : b, $ K : b,
$ J :b for all b.

A registry r is also a, possibly partial, model of properties p specified in E. We say that it is a complete
model i↵ its statuses are values or absence, i.e. imprq Ä VK. A partial or incomplete model has at least one
unknown or undetermined (present) status, i.e. imprq Ç VK. Additionally, we say that a model r1 progresses
from r, written r Ñ r1, i↵ rpxq Ñ r1pxq for all x P domprq “ dompr1q. We write r |ù p|p|q to mean that the
model r satisfies the logical meaning of Property p.

Definition 2 (Model of registry): A complete registry r is a model of E, i.e. r |ù E i↵ $ r : E and, for
all x P domprq, Epxq “ xv :b | py and r |ù p|prx{vs|q. A partial registry r is a model of E i↵ there exists a
complete model r1 Ö r s.t. r1 |ù E.

Subject reduction considers an expression E $ e : t of type t under well-formed hypothesis E and reduces
it to the definitions x“e{ d using a fresh x R fvpeq. If, given a model r |ù E, px : tq, evaluation progresses
by r, d á r1, d1, then r1 |ù E, px, tq and E, px, tq $ d1 :px, tq.
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Theorem 1 (Type preservation): Let E $ e : t, x R dompEq, F “ E, x : t and x “ e { d. If r |ù F and
r, d á r1, d1 then r1 |ù F and F $ d1 :px : tq.

The proof of Theorem 1 is given in Appendix A. It reduces to showing the invariance of E as a model of
the updated registry in the calculus of base definitions, by factoring the type inference rules (T-*) with the
rewriting rules of {.

E $ d : F E $ d1 : F 1
E $ d || d1 : F, F 1 (T-COM)

E, px : sq $ d : F, px : sq E $ sX E $ F X
E $ d{x : F (T-LOC), x R dompEq

Just as for liquid type inference, subject reduction is a type preservation property, not a progress property. It
states that the type and property of a program are sound approximations of its streams’ statuses. Logical
satisfiability does not su�ce, however, to guarantee a progress property, as this depends on the calculability
of the ®-maximal type of an expression (it could simply be true and any model would satisfy it).

Conjecture 1 (Progress): Let E $ e : t and t be ®-maximal. If r |ù E, px : tq and, consequently, assigns
statuses in VK to input streams satisfying the clock properties specified in E, then e can execute and return
a well-typed result.

Progress depends on the clocks relations implied by the logical properties of a program (the synthesis of a
function that defines the clock of all streams) as well as the schedulability of causal relations implied by its
value properties (the synthesis of a static schedule for all equations). These are addressed next (Section VIII),
where progress is defined by the property of, so-called, patient stream functions.

VII. Typing clock operators
Critical safety properties, such as deadlock-freedom and input-output determinism, are these guaranteeing

the correct executability of programs synthesised from data-flow specifications. Synchronous data-flow
languages like SDF, Lustre and Signal support similar definitions of these properties, as all support similar
primitives to delay, merge and sample streams.
Delay In a synchronous data-flow language, a delay equation x “ y pre z (in Lustre, x = z -> pre y;
in Signal x := y$1 init z) sends the value v of z (a constant c) along the output stream x and stores the
value w of y in place of z. As a result, it delays the delivery of events from stream y by one evaluation
tick and prefixes this output by z. To determine the type of pre using axiom (T-PRE) in lieu of (T-FUN)
with f “ pre, some temporal reasoning is in order. pre initially (at clock i0) accepts an input constant z and
then (at clock  i0) outputs the previous value of y (at some clock in´1) to the output stream ⌫ (at clock in),
n ° 0. Had we had time tags into the static semantics, we could have written something such as:

E, i0 $ ⌫0 : tz ® tx and @n ° 0, E, in $ ⌫n : tn´1
y ® tx with E $ sX

Therefore, here, as in [27], the liquid type tz of z (at the first instant i0 of ⌫, e.g. c “ 0) and the liquid
type ty of y (at instants  i0 of y, e.g., 1 † y † 9) need to have a common implicant (e.g. 0 § v † 9) that
does mention none of the branches or fictive clocks i0 . . . in. Let tx be that common upper-bound; it is the
invariant of x, i.e., the property guaranteed by x at all times. Hence the resulting type for delay (we renamed
the arguments):

E $ pre : x :bxpy Ñ y :bxpy Ñ bxv :b | p ^ v̂ ô x̂ ô ŷy (T-PRE)

Merge Lustre and Signal only di↵er in the way merge and sampling operations are processed in time.
This, in turn, makes an important di↵erence as to how and when clocks can be computed. In Signal, an
equation x := y default z defines the output x by y if it is present and by z otherwise. In Lustre, merge
is implemented by the conditional x = if c then y else z over four synchronous streams x, c, y, z. At
all times, x takes the value of y if c is true and takes z otherwise.
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Path sensitivity reasoning is used to define the axioms default and if by considering the clocks of input
streams. If we apply the same reasoning to Lustre’s conditional, we get value relations guarded by clocks.

E $ if : x :bool Ñ y :b Ñ z :b Ñ
x⌫ :b | ⌫̂ô x̂ ô ŷ ô ẑ ^ x ñ ⌫ “ y ^ x ñ ⌫ “ zy

For Signal’s default axiom, clocks are these of both input streams (data-flow paths). The output ⌫ is defined
by the stream y when its clock is present and by the stream z otherwise (at the clock ẑ “minus” ŷ). This
analysis yields the conjunction of properties that defines the type of default.

E $ default : x :b Ñ y :b Ñ
x⌫ :b | ⌫̂ô x̂ _ ŷ ^ x̂ ñ ⌫ “ x ^ ŷ ´ x̂ ñ ⌫ “ yy

Finally, Lustre’s conditional is compatible with Signal, as it can also be written as
x := y when c d e f a u l t z when not c

| x synchro c synchro y synchro z

Sample The same reasoning applies to the rule for sampling: in Lustre, x = y when z and, in Signal,
x := y when z. In Lustre, y, z are synchronous and x is defined by y when z is true. In Signal, the output
stream is defined by y if z is true.

E $ whenlu : x :b Ñ y :bool Ñx⌫ :b | ⌫̂ô x̂ ô ŷ ^ y ñ ⌫ “ xy
E $ whensig : x :b Ñ y :bool Ñx⌫ :b | ⌫̂ô px̂ ^ ŷ ^ yq ^ ⌫̂ñ ⌫ “ xy

Example As we observed in the earlier example of stream function tank, sub-typing in the presence of
path-sensitivity and name masking implements a property of widening found in abstract interpretation by
the automatic (and algorithmically bounded) determination of an implicant to the approximated clauses.
In the case of synchronous data-flow, let us consider another classical program, stopwatch, from a more
algorithmic standpoint.

l e t stopwatch (n:int) =

l e t x = y pre 0

| y = 0 when x >= n d e f a u l t x + 1

in y

Let E “ pn : intxpny , x : intxpxy , y :xpyyq with the properties pn,x,y unknown. From Rule (T-PRE),

E $ x “ y pre 0: px, s.t. px “ 0q ñ px and py ñ px

From the rule for when and the first path of the merge (we informally allow properties into environments
to mean they are “and-ed” to them), E, px • nq $ y “ 0 : py, s.t. py “ 0 ô px • nqq ñ py and
x̂ ô n̂. From the rule for default and the second path of the merge, E, px † nq $ y “ x ` 1 : py, s.t.
py “ x ` 1 ô px † nqq ñ py. Last, constraint resolution from

x̂ ô ŷ
py ñ px

px “ 0q ñ px

py “ 0 ô px • nqq ñ py

py “ x ` 1 ô px † nqq ñ py

yields the deduction of py
Ÿ“ p0 § y § nq and the type of the stopwatch.

stopwatch : n : int Ñ y : intxpŷ ô n̂q ^ p0 § y § nqy
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VIII. Safety Properties
Critical safety properties are these guaranteeing the correct executability of programs synthesised from

data-flow specifications. Those pertaining to the dead-lock freedom and schedulability of synchronous
data-flow programs can be deduced directly from liquid types and represented using specific algebraic
structures.
Schedulability The determination of a static schedule of operations is an essential part of the compilation
of synchronous languages. Imperative synchronous languages such as Esterel and SyncCharts define graphs
representing write-to-read relations between program instructions [1], [16]. Data-flow synchronous languages
similarly define graphs to materialise causal dependencies from definitions to uses of stream values in
programs [17], [25].

Liquid types allows us to formulate schedule synthesis from the type of a data-flow network. This is done
by constructing a guarded scheduling graph (in the form of [23]) from the interpretation of uninterpreted
guarded equations present in liquid types. We implement this by the introduction of qualifiers q, of the form
ŷ ñ x Ñ z, that abstract (or, equivalently, are implied by) inferred properties of the form ŷ ñ z “ qrxs,
where a context qrs is defined by a term with a hole. The relation of dominance x"y will be explained in
the next section.

a ::“ ⌫ | ⌫̂ clock and value qualifiers
q ::“ . . . | a Ñ a | a"a abstract properties
qrs ::“ rs | ‹ qrs | qrs ‹ q | q ‹ qrs context

The type of a synchronous data-flow network features properties of two forms: relations between clocks
and/or boolean conditions as well as (directed) equalities guarded by clocks x̂ ñ y “ qrzs. One can interpret
the latter as causal relations to build a graph of scheduling relations of the form z Ñx̂ y to mean that the
computation of z precedes that of y at Clock x̂.

However, a stream equality x “ y is causal. It hence needs to be disambiguated from logical equality, now
written x ““y, as promised earlier and to avoid confusion. As a result, Axiom (c-eq) below decomposes
an equation x “ y into a logical equality x ““ y and the causality relations x – y and x̂ Ñ x, for all
q, q1rs, x, y.

Additionally, in Rule (c-clk), a clock v̂ defined by a boolean condition qrxs depends on the value of stream
x, i.e. v̂ ô qrxs. Therefore, it implies a causality relation x Ñx̂ v̂, as the clock of v cannot be determined
before x is computed. Last, and thanks to the sub-typing rule (T-SUB), the introduction (and elimination) of
these relations can be performed in any place suited, e.g. to abstract a local stream x in a definition d from
its type, using the transitive rule (c-trs).

|ù p|qñ x“q1rys|qñp|qñ x ““q1rys^qñyÑ x– x̂|q (c-eq)
|ù p|x̂ ô qrys|q ñ p|y Ñ x̂|q (c-clk)
|ù p|qñaÑa1^q1 ña1 Ña2|q ñ p|pq^q1qñaÑa2|q (c-trs)

We note ~E the scheduling graph implied by E and note ~E˚ for its transitive closure. ~E can also be seen
as an interpretation of E pertaining to its scheduling logic. Scheduling graphs are naturally subject to a
set-theoretic containment relation, noted Ñ. Now, since our liquid type system permits property elimination
using the sub-typing rule, not all types of a given data-flow network are good candidates for causal analysis.
In fact, the only equivalence class of interest is that maximal with respect to Ñ.

We say that E is Ñ-maximal (w.r.t. d) i↵ E $ d : E and, for any other F $ d : F, ~F˚ Ñ ~E˚. Definition d is
deadlock-free i↵ all cycles q ñ v Ñ v of its maximal scheduling graph invalidate q.

Definition 3 (Schedulability): Let E $ d : E and E be Ñ-maximal for d. d is schedulable i↵, for all
q ñ x Ñ x Ñ ~E˚, |ù p|E|q ñ  q. We say that d{x is schedulable i↵ d is.
Example Consider the countdown function of the previous section. From its definition and/or type
specification, one syntactically obtains the following causal stream relations.
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l e t countdown (n) =

l e t c = o pre 0

| o = n d e f a u l t x

| x = c - 1

| y = true when (c=0)

in synchro n y; o

n̂ ñ n Ñ o
x̂ ´ n̂ ñ x Ñ o

ĉ ñ c Ñ x
ĉ ñ c Ñ ŷ

Patience In complement to schedulability analysis, the correctness of a synchronous data-flow network
relies on a definition of timed determinism: a correct synchronous program is said endochronous i↵ it is
able to autonomously decide when its streams need to be read or written, i.e. when their status is present or
absent. In Lustre, this is quite simple since all input streams are, by construction, synchronous: a Lustre (or
Simulink or SDF) program is an endochronous stream function, by construction.

In Signal, endochrony or constructivity is defined with respect to the asynchronous stream interface of
synchronous programs [30]: the capability of a synchronous program to deterministically peek values from
input streams based on the internal logic of its specification. This internal, or implicit, computation of the
program is synthesised by the compiler from a reasoning on clocks, called hierarchisation. Hierarchisation
attempts to build a dominance relation between clocks to order to sort those that can be computed from the
others: a dominance x"y means that the clock of y can be computed or deduced from the one of x. It is,
by construction, a pre-order or graph. Its aim is, here, to abstract qualifiers in E.

|ù p|x̂ ô ŷ|q ñ p|x » y|q (c-sim)
|ù p|x̂ ô qrys|q ñ p|y" x|q (c-sub)
|ù p|x̂ ô qry, zs ^ pv"yq ^ pv"zq|q ñ p|v" x|q (c-op)

Dominance can be defined over clock equivalence classes to facilitate analysis. We say that x̂ and ŷ are
synchronous, or »-equivalent in E, written x̂ » ŷ i↵ E implies x̂ ô ŷ.

Moreover, notice that the dominance graph of a schedulable program is acyclic. Indeed, y" x"y would
require x̂ ô qrys and ŷ ô q1rxs, hence x Ñ ŷ Ñ y Ñ x̂ and thus x Ñ x. We call Ẽ the dominance graph
of E. The dominance relation is subject to set-theoretic inclusion and we shall consider the Ñ-maximal
dominance relation for a given d.

Definition 4 (Patience): Let E $ d : E and Ẽ be Ñ-maximal. d is patient i↵ Ẽ has one "-maximal
»-equivalence class.
Example Consider the countdown function again. From its definition and/or type specification, one
syntactically obtains the following clock relations.

l e t countdown (n) =

l e t c = o pre 0

| o = n d e f a u l t x

| x = c - 1

| y = true when (c=0)

in synchro n y; o

c » o

c » x
c " y
y » n

This provides a strategy to evaluate the status of streams in countdown. Execution is triggered by a stream
of the "-highest class to, c, xu, here obviously o, by setting its status to present. The status of all other
streams can be deduced from that of o.
Progress with patience The above yields a formulation of the notion of progress in the framework of
liquid types: if d is schedulable and patient, then it progresses in the sense of Conjecture 1. In Lustre, and
similarly Simulink, Ptolemy’s SDF, all the input streams of a block are synchronous, by construction. This
implies that the "-maximal class of a program contains all its input streams. Hence the proposition that
patient and schedulable programs progress.

Proposition 1 (Synchronous progress): Let E $ d : E, E be Ñ-"-maximal and d be a schedulable (and
patient) Lustre program. Let $ r : E such that rpxq P VK for all x P dompdq and rpxq “? otherwise. Then,
r, d á˚ r1, d1 and impr1q Ä VK.
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In addition to that, the Signal language allows for a program to internally control the delivery of values
along input streams. To represent this feature, [30] defines the interface semantics between a synchronous
process and an asynchronous network of FIFO bu↵ers, reminiscent of Kahn networks [13], and shows that
a patient process is constructive with respect to that interface (i.e. asynchronously constructive).

To keep the presentation within the synchronous semantics of Section V, we instead assume a set of
available inputs values I for a given definition d, and show how execution progresses by iteratively choosing
and peeking these values to produce outputs. Let max"pdq be the "-maximal »-equivalence class of streams
in d. Call succ"pXq “ YX"YY the union of X’s immediate successors in ". Again, patient and schedulable
programs progress, Proposition 2.

Proposition 2 (Controlled progress): Let E $ d : E, E be Ñ-"-maximal. Let
‚ I “ dompdq, O “ impdq be the inputs and outputs of d,
‚ V : I Ñ V be a set of well-typed input values $ V : EV

‚ r : I Y O Ñ D be a registry and set its image to unknown except for max"pdq (called its trigger):

@x P domprq, if x P max
"

pdq then rpxq “ Vpxq else rpxq “?

If d “ d0 schedulable and patient, then progress is defined by a finite series of steps 0 § n † N § |I| such
that

1) Computation strictly progresses:

rn, dn á˚ r1
n, d

1
n ^ Dx P fvpd1

nq, rnpxq Ä r1
npxq

2) If rpIq Ç VK, define dn`1 “ d1
n and rn`1 by

@x P I, if r1
n “ J then rn`1pxq “ Vpxq else rn`1pxq “ r1

npxq
and repeat step 1.

3) Otherwise, all inputs have been fetched and outputs are now defined: r1
npOq Ä VK, N “ n ` 1.

Example An example of a patient program is countdown, in Section V, whose execution can be triggered
by setting its output stream to present, to then read the input if needed in its state. It first iterates until the
status of the input is known. Then, the value of n, here 42, can be loaded (input), and the iteration resumed
until the output is computed. 42 is the answer.

pc, ?q pn, ?q po,J‚q px, ?q py, ?q count0
ápc,J‚qpn, ?q po,Jq px, ?q py, ?q count0 from á

pre

ápc,Jq pn, ?q po,Jq px,J‚q py, ?q count0 from á
subápc, 0‚q pn, ?q po,Jq px,Jq py, ?q count0 from á
pre

ápc, 0q pn, ?q po,Jq px,´1‚qpy, ?q count0 from á
subápc, 0q pn, ?q po,Jq px,´1q py,J‚qcount0 from á
when

ápc, 0q pn, ?q po,Jq px,´1q py, tt‚q count0 from á
when

ápc, 0q pn,J‚q po,Jq px,´1q py, ttq count0 from á
sync

ápc, 0q pn, 42‚qpo,Jq px,´1q py, ttq count0 from input
ápc, 0q pn, 42q po, 42‚qpx,´1q py, ttq count0 from á

defaultápc, 0q pn, 42q po, 42q px,´1q py, ttq count42‚ from á
pre

A. Linear clocks and array streams
Besides the rich interface properties refinement types capture, one most exciting aspect is their applicability

to a large variety of models of computation and communication found in data-flow processing. It is,
furthermore, at an easy reach, with the availability of Liquid Haskell [32] and, more importantly, of stream
monads [19] as a medium to modularly specify these MoCCs.
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Array processing One straightforward extension of our liquid clock system is linked to the one proposed
in [27] for arrays and applies it to data-intensive/data-parallel functions found in signal processing applications.
A data-parallel/data-intensive array processing MoCC can be characterised by a few array functions:

‚ map f x, to apply a function f to every tuple of elements at the same index in Array stream x;
‚ reduce f x v, to perform a reduction on the array stream x using the function f and initial value v, etc. . .
‚ scan f x v, to perform a prefix-scan on array stream x using function f and initial value v
‚ permute i x, to permute an array stream x using the bijective index function i
‚ gather i x, to gather an array stream x using the injective index function i
‚ filter f x, to sample array stream x with the filter function f

Liquid types for array-processing functions are proposed in [27]. We write |x| for the length of an array
stream x. Function map accepts a function f of type x : s Ñ b and an array stream y of type vec s. Its output
v is an array of bs of same clock and length as y. Function reduce accepts a function f of type x : s Ñ b
and an array stream y of type vec s. Its output v is of type b. Its logical clock is that of y.

map : f :px : s Ñ bq Ñ y :vec s Ñxv : vec b | v̂ “ ŷ ^ |y| “ |v|y
reduce : f :px : s Ñ bq Ñ y :vec s Ñxv :b | v̂ “ ŷy

etc . . .

Array scheduling The introduction of index/length array-based reasoning with the above type definitions
opens to considering a variety of quantitative reasoning issues in data-flow processing, commencing with
approximated (linear) real-time scheduling. For instance, the computation time of reduce f y could be said
to be that of Function f multiplied by the size of Array y.

In this aim, we have the possibility to extend our boolean clock model to interpret clocks as linear
approximations of (possibly cyclo-static) data-flow processes [6]. In this aim, Function every accepts an
input stream x and defines the clock of its output by the rate m and phase n of the input x. Instead of
referring to clocks as symbolic, logical relations, it denotes by ⌫̂ “ m ˚ x̂ ` n the period m and phase n
relations between its input x and output v.

To accommodate the tradeo↵ between regular data-processing and linear communication rates, simple
solutions are to define adapters between clock domains [11], to install FIFO bu↵ers when possible [28], the
most straightforward technique being to pack/unpack data at clock domain crossings. Function packrn : ints
takes an integer constant (stream) n and packs data from its input stream x into arrays of size n at the rate
⌫̂ such that x̂ “ n ˆ ⌫̂. Function unpack does the opposite.

every : m : int Ñxn : int | 0 § n † my Ñ x :b
Ñx⌫ :b | p⌫̂ “ m ˚ x̂ ` nq ^ p⌫̂ô ⌫ “ xqy

packrn : ints : x : s Ñxv :vec s | |v| “ n ^ x̂ “ n ˆ ⌫̂y
unpack : x :vec s Ñxv : s | ⌫̂ “ |x| ˆ x̂y

Time inference In the same manner as the above, it becomes also possible to address a variety of issues
found in real-time calculi, such as for instance estimating the throughput of a given data-flow network, its
processing time, its end-to-end latency... This can start from the collection of fine-grained clock relations
that estimate one output stream’s delivery time from the real-time clock of its computation per input clocks.

The time at which the output value of an addition plus x y becomes available can be specified to be equal
to the maximum between the delivery time, noted x̃, of its inputs x (and y) plus the �plus time of executing
the addition.

plus : x : int Ñ y : int Ñx⌫ : int | ⌫̃ “ maxpx̃, ỹq ` �plusy
map : f :px : s Ñ v : tq Ñ y :vec s

Ñ@
w :vec t | w̃ “ ṽ ˆ r|y| ˆ � f {�map

s ^ |y| “ |w|D
reduce : f :px : s Ñ v : tq Ñ y :vec s

Ñxw : t | w̃ “ ṽ ˆ r� f ˆ |y|q{plogp�
red

qq ` 1qsy
This computation time aspect can be reflected in the type of array-processing functions as well, e.g. map f x,
by dividing the amount of computation needed by the function f to process all the array elements of x
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divided by the amount of parallelism �
map

provided by the implementation of the mapping protocol, with
the same for reduce using pipelined execution.

map : f :px : s Ñ v : tq Ñ y :vec s
Ñ@

w :vec t | w̃ “ ṽ ˆ r|y| ˆ � f {�map

s ^ |y| “ |w|D
reduce : f :px : s Ñ v : tq Ñ y :vec s

Ñxw : t | w̃ “ ṽ ˆ r� f ˆ |y|q{plogp�
red

qq ` 1qsy
Music synthesis Along the lines of the above, an exciting venue of future work considers the signal
processing and synthesis language Faust [10] which allows to produce music from signal data-flow networks.

Faust is both a functional and block-diagrammatic specification language in which audio is produced from
composing elementary sound processing blocks: signals of constant amplitude, e.g. n; _, the identity signal
function; +, to sum up amplitudes; *, to scale them; : to compose functions; and ~ to create feedback. For
instance, the tiny code snippet *(1-n) : + ~ *(n) defines a low-pass filter.

In similar manners as the liquid clock system presented in this paper, refinement types provide an
algebraically rich framework to reason about the many quanta at play in synthesised audio: amplitude, rate,
volume, throughput, timing and latency.

IX. RelatedWork
The framework of liquid clocks introduced in this paper relates to the theory of refinement types developed

by the Liquid Haskell project of Jahla et al. [32]. The type system expresses quantitative properties on
Boolean and integer values and indexes in the spirit of [27] and the inference system of [36]. Timed properties
are represented by guarded proposition much like Pnueli’s synchronous transition systems (STS) [26] which
makes them amenable to SAT/SMT-verification related works [9], [23], here, by expressing them in QF-
EUFLIA logic. Merging both approaches o↵ers a powerful logical framework for both analysis, verification
and code generation.

It allows us to revisit and improve several lines of earlier works concerned with clock calculi [2], [15],
[24], scheduling analysis [6], [17], [25], [28], verification by abstract interpretation [5], [9] or just type-
based analysis [4], [8], [18], [29], and yet extend and apply these to a context now far more general than
synchronous data-flow, with the correct theoretical concepts to guarantee type soundness.

Most related data-flow synchronous languages [3], [8], [11], [12], [14], [18] now have well-developed and
understood analysis and verification frameworks to help validate specification correctness and automatically
generate code. While many di↵erent approaches have been considered to cast these analysis and verification
techniques into the framework of type theory, none have been prominently successful in practice. An
obvious choice seems to have leaned toward type polymorphism in early attempts [8], [29], albeit parametric
polymorphism appears in practice inadequate to represent value dependencies: it makes type inference
prone to variable capturewhich can only be circumvented by over-approximations and results in ine�ciency.
Another possible choice is to represent clocks using regular expressions [11], [18], which works well with
sub-typing, but unfortunately builds types of exponential space complexity,just as polymorphic type inference,
if applied to scheduling [4], [29]. One hence seeks drastic approximations (envelopes, counters, harmonics,
adapters) or sophisticated constraint simplifications to reduce complexity.

Refinement types o↵er a valuable alternative to the above from several standpoints, both in terms of
soundness guarantees, space complexity and abstraction capabilities. Sub-typing in refinement type systems
defines a sound and e↵ective means of abstraction, very much comparable, and actually implemented
with, widening techniques as in abstract interpretation, and reduction techniques as in model checking. As
Section 8 shows, if solely applied to static scheduling, liquid clocks allow to maintain a scheduling graph
representation that provably remains in the size of its input-output interface, and definitely not in its number
of internal operations.
Example For instance, abstracting the clock relations and scheduling graph of the stream function
countdown, in Section VIII, is enforced by the sub-typing and well-formedness relations to be n̂ ñ
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n Ñ o ^ ô Ñ o ^ n̂ § ô ^ 0 § o § n. It is provably, and by design, limited to its interface streams.
l e t countdown (n) =

l e t c = o pre 0

| o = n d e f a u l t x

| x = c - 1

| y = true when (c=0)

in synchro n y; o

n̂ ñ n Ñ o
x̂ ´ n̂ ñ x Ñ o

ĉ ñ c Ñ x
ĉ ñ c Ñ ŷ

X. Conclusions
Our preliminary theoretical study on so-called liquid clocks o↵ers exciting evidence on the capability

to capture quantitative properties of data-flow specifications, in a decidable, concise and sound manner,
using refinement types. These promising results open to a variety of applications, from the integration of
contract systems and modular specifications, to qualification by traceability of program properties from
specification to generated code, to certified code generation using translation validation and type certificates,
to correct-by-construction orchestrated music synthesis.

Liquid types allow to revisit many of the ad-hoc, problem-specific, algebraic frameworks and/or type
theories that have been proposed to capture many variations of the Kahn principle using synchronous, periodic,
multi-rate, a�ne, regular, integer, cyclo-static, continuous time models, all into one single, straightforward,
verification framework. Liquid types open to considering a large variety of models of computation and
communication, not only synchronous, polychronous, or asynchronous data-flow in the spirit of SDF,
Simulink, Lustre, Signal, Kahn process networks, and multi-rate, cyclo-static, data-parallel, DDF MoCCs.

We are currently furthering our experiments with an evolving prototype that uses Liquid Haskell as
language front-end and Z3 as SAT/SMT verifier, opening up to unprecedented expression capabilities.
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for Scientific Research, grant FA8655-13-1-3049.
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Appendix
A. Proof of Theorem 1

The type soundeness property of Theorem 1 reduces to showing the invariance of E as a model of the
updated registry in the calculus of base definitions, by factoring the type inference rules (T-*) with the
rewriting rules of {.

E $ d : F E $ d1 : F 1
E $ d || d1 : F, F 1 (T-COM)

E, px : sq $ d : F, px : sq E $ sX E $ F X
E $ d{x : F (T-LOC), x R dompEq

The type preservation theorem (Theorem 1) states that,
if E $ e : s, F “ E, px : sq, x“e{ d, r |ù F and r, d á r1, d1

for x R dompEq, then r1 |ù F and F $ d1 :px : sq.
By application of Lemma 1, reduction preserves typing.

If E $ e : s, F “ E, x : s and x“e{ d,
for x R dompEq, then F $ d :px : sq and d is SSA.

Proving Theorem 1 amounts to an inductive proof by case analysis on the grammar of base definitions d in
SSA form, as stated in Proposition 3, below. We say that E includes F, written E Ö F i↵ Epxq “ Fpxq for
all x P dompFq.

Proposition 3:
If E $ d : F, E Ö F, r |ù E and r, d á r1, d1

then r1 |ù E and E $ d1 : F.
The proof of Proposition 3 is done by:

‚ structural induction on the grammar of base definitions d

d ::“ x “ y ‹ z | d || d | d{x

‚ induction on the (monotonic) transition relation á
‚ case analysis of all transitions á‹ of ground equations
Finally, since d is in static-single assignment form, we both guarantee (in structural cases) and use (in

ground cases) the fact that each stream in F is defined by exactly one equation in d. These are labelled by
a p˚q.
Case d{x

By hypothesis, E Ö F and

p1q E $ d{x : F p2q r |ù E p3q r, d{x á r1, d1{x

Since (1), Rule (T-LOC) implies x R dompEq and

p4q E, px : sq $ d : F, px : sq p5q E $ sX p6q E $ F X

Since (3), Rule (LET) implies x R domprq and

p7q r, px, ?q, d á˚ r1, px, ⌫q, d1

Moreover, since x R domprq, x is only defined in the scope of d

p˚q x R dompEq ^ x R domprq
By Definition 2, for all w Å? such that r, px,wq |ù E, px : sq

p8q r, px, ?q |ù E, px : sq
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From (4,7,8), by induction hypothesis on both the structure of d and the transition relation

p9q r1, px, vq |ù E, px : sq p10q E, x : s $ d1 : F, x : s

From (9), r1 |ù E.
From Rule (T-LOC) with (5,6,10), the conclusion: E $ d1{x : F.
Case d || d1

By hypothesis, E Ö F, F 1 and

p1q E $ d || d1 : F, F 1 p2q r |ù E p3q r, d || d1 á r1, d || d2

From (1) with Rule (T-COM)
p4q E $ d : F p5q E $ d1 : F 1

From (4,5), by definition of extension for F, F 1, dompFq X dompF 1q “ H. Hence, every stream x in F, F 1

has exactly one definition in d or d1.

p˚q impdq X impd1q “ H
Now, from (3), with Rule (PAR), there are two choices: r, d1 á r1, d2 or r, d á r1, d2. We choose the former
(the proof of the latter is identical). We get

p6q r, d1 á r1, d2

Now, from (2,5,6) and by induction hypothesis

p7q r1 |ù E p8q E $ d2 : F

From Rule (T-COM) with (4,8), the conclusion: E $ d || d2 : F, F 1.
Case x “ y pre v

By hypothesis, E Ö px : sq and,

p1q E $ x “ y pre v :px : sq
p2q r |ù E
p3q r, x “ y pre v á r1, x “ y pre w

From p1q and by the guarantees p˚q from both previous structural cases, y pre v is the unique definition of x.
From (1), and Rule (T-DEF)

p4q E $ y pre v : s

From Axiom (T-PRE), naming uv the value identifier of v

p5q E $ pre :py :bxpyq Ñxuv :b | py Ñ x :bxp ^ qy
where s “xu :b | p ^ qy and q “ x̂ ô ŷ ô ûv.
By Rule (T-APP) with (4,5),

p6q E $ y :bxpy p7q E $ v :xuv :b | py
From (7), by the Definition of constants and Rule (T-SUB)

p71q E $xuv :b | ûv ñ uv “ vy ® xuv :b | py
Now, from (3) and rule (pre),

p8q rpyq, v, rpxq á
pre

r1pyq,w, r1pxq
From Table (á

pre

), there are six cases to consider
1) rpx, yq “ p?,Kq, r1px, yq “ pK,Kq, d1 “ d.
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r is a partial model, since rpxq “?. From (2) and by Definition 2, there exists a complete model r2

such that
p9q r Ä r2 impr2q Ä VK r2 |ù E

From the hypothesis, E Ö px : sq and by definition of s,

p10q |ù p|E|q ñ p|s|q ñ p|x̂ ô ŷ|q
Since rpyq “ K, the only r2pxq satisfying p|x̂ ô ŷ|q is K. Hence,

p11q r1px, yq “ r2px, yq “ K
From (11), r1 Ä r2 and, by Definition 2, r1 |ù E.

2) rpx, yq “ pK, ?q, r1px, yq “ pK,Kq, d1 “ d. Same as case 1.
3) rpx, yq “ p?,Jq, r1px, yq “ pv,Jq, d1 “ d. Again, the proof is similar as case 1: from (2) and Definition 2,

there exists a complete model r2 Å r s.t. r2 |ù E. Since rpyq “ J and p|E|q implies p|x̂ ô ŷ|q, the
only choice is r2pxq Å J. However, from p˚q, no other equation defines x. Hence, the only choice is
r2pxq “ r1pxq “ v. Hence, r2 Ö r1 and, by Definition 2, r1 |ù E.

4) rpx, yq “ pJ, ?q, r1px, yq “ pv,Jq, d1 “ d. Same as case 3.
5) rpx, yq “ pJ,Jq, r1px, yq “ pv,Jq, d1 “ d. Same as case 3.
6) rpx, yq “ pv,wq, r1px, yq “ pv,wq and d1 Ÿ“ px “ y pre wq.

Obviously, r1 |ù E from (2). Now, it remains to show that equation d1 yields type px : sq. This reduces
to showing that E $ w :bxpy as follows to (15).
By the definition of w as a constant stream:

p12q E $ w :xuw :b | ûw ñ uw “ vy
Now, from (6), since r1pyq “ w and E is a model of r1, by Definition 2,

p13q r |ù p|pry{ws|q
From (13) and Rule (S-BAS),

p14q p|E, uw :b|q |ù p|ûw ñ uw “ v|q ñ p|pry{uws|q
E $xuw :b | ûw ñ uw “ vy ® xuw :b | pry{uwsy

Hence, from (7’) and by Rule (T-SUB),

p15q E $ w :bxpy
From (5,6,15) and by application of Rule (T-APP)

E $ y pre w : s

Hence, by rule (T-DEF), the conclusion: E $ d1 :px : sq
Case x “ y ‹ z

The base cases of all combinatorial equations d “ x “ y ‹ z with ‹ ‰ pre are done in a similar manner
as for pre by inspection of the transition rules á‹ except that there is no state transition, and hence d “ d1.
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