
Adventures in the (not so) Complex Space ∗

Emilio Jesús Gallego Arias Pierre Jouvelot
MINES ParisTech, PSL Research University, France

mailto:e+coq2015@x80.org

Abstract
We report on the progress of a constructive mechanization for a
small subset of signal processing theory, built upon the SSREFLECT
and MATHCOMP libraries.

The development was started to provide mechanized semantics
for audio programming languages. Currently, we have formalized
several standard properties of the Discrete Fourier Transform, such
as its unitary matrix form and its power and convolution theorems.
Future goals include transfer functions and constant overlap-add
processing.

At the workshop, we aim to discuss the needs and limits of
our current approach, surveying some mathematical concepts not
covered by existing libraries, and similar efforts in other frameworks
and theorem provers.

1. Introduction and Motivation
A key component in audio programming and analysis is the Dis-
crete Fourier Transform (DFT). Its efficient implementation — the
Fast Fourier Transform — has made practical a myriad of sound-
processing algorithms, from convolution-based filtering to envelope
extraction.

The need for a mechanized treatment of the DFT and its prop-
erties arose in our quest to develop a mechanized semantics for
Faust [12], a functional stream-based audio programming language.

Faust’s time-domain semantics largely correspond to well-
understood notions in the synchronous programming paradigm [3,
2]. However, frequency-domain aspects — central in audio — seem
less explored in the literature. Thus, a natural preliminary step was
to attempt the mechanization of basic DFT and DSP (Digital Signal
Processing) theory.

We have chosen as a reference text the excellent book series by
J.O. Smith [18, 17, 19]. Among other nice qualities — like detailed
paper proofs — the series is specific to audio applications, reflecting
very well the particular, domain-specific considerations of audio
DSP. Additionally, the author has ample experience with Faust and
stream-based functional audio programming [16].

The first book in the series, “The Mathematics of the Discrete
Fourier Transform (DFT): with Audio Applications”, presents the
basic theory about the DFT: linearity, basis, convolution, and power
conservation.

Such theorems are far from mathematically challenging, notwith-
standing that they pose a few difficulties in the mechanized con-
structive setting. In particular, the basic theory of the DFT relies on
finite and infinite series, linear algebra, trigonometry, and complex
analysis.

The first proof in the book is Euler’s formula: eix = cosx +
i sinx. Indeed, in DSP trigonometry and complex analysis are per-
vasive, and most definitions crucially depend on complex exponen-

∗Research funded by the ANR FEEVER project.

tiation. Thus, the logical path to mechanization seems to require a
library supporting complex analysis, such as [8, 5, 13].

However, we soon realized that good support for advanced linear
algebra was maybe even more crucial. For that domain, our preferred
choice is the linear algebra library of MATHCOMP [11].

Unfortunately, integration of MATHCOMP and constructive com-
plex analysis doesn’t seem immediate, due to different definitions
of key algebraic structures. A combination of MATHCOMP with
classical analysis works, and seemed the most viable choice, even
if at the cost of abandoning hopes for a constructive, axiom-free
development.

But once we were more familiar with standard DSP practice,
it became apparent to us that “true” complex numbers were not a
hard requirement for the key parts of the discrete transform theory.
Indeed, the SSREFLECT constructive algebraic numbers could pack
enough power for our needs. 1 This amounts to work in pre-Hilbert
spaces, which seems enough for our case.

Indeed, libraries for algebraic numbers, big operators, and matrix
libraries [4, 10] have made our job straightforward, to the point that
it has felt like an exercise. It is also remarkable how close our proofs
are to the pen and paper versions.

Most of our time was spent in proving some technical lemmas
about primitive roots of the unity, and by finding a convenient defi-
nition of inner product of (algebraic) vectors. Another remarkable
fact of the library is that we didn’t use induction in the whole de-
velopment, “all the required induction was already contained in the
provided lemmas”.

In the rest of the abstract, we give a quick overview of the
development, to briefly conclude with some thoughts on related and

planned work.
An version of the code is available at https://www.cri.

ensmp.fr/people/gallego/coq-2015/dft.v; we warn the
reader that it is quite in-flux, we expect it to significantly change in
the next weeks. We also hope that the expert reader will excuse our
lack of knowledge about the vast MATHCOMP libraries; given its
sheer size it could be well the case that we are redefining already
present notions nor using it in an optimal way.

2. The Basic Ingredients
Inner Products, Normed Vector Spaces We work over the alge-
braic numbers C. For any x ∈ C, x = <x+ i=x, where i2 = −1.
The conjugation of a number is given by x+ iy = x− iy.

Assume x, y ∈ Cn, elements of the vector space obtained
by n copies of C. We will identify Cn with time-sampled signals
of n samples. Then the inner product of x and y is 〈x, y〉 =∑n−1

m=0 x(m)y(m), and a norm is then defined as ‖x‖ =
√
〈x, x〉.

1 Indeed, in a presentation preceding this work, the first author was asked
whether the algebraic numbers would suffice. We wrongly responded no;
however there are still corners of the theory that may be difficult to capture
without working in a complete metric space.

mailto:e+coq2015@x80.org
https://www.cri.ensmp.fr/people/gallego/coq-2015/dft.v
https://www.cri.ensmp.fr/people/gallego/coq-2015/dft.v

We write x⊥ y for 〈x, y〉 = 0, and we say that x and y are
orthogonal.

We assume our vector spaces to be cyclic, that is, for x ∈ Cn
we perform indexing modulo n. We also have a shift operator,
SHIFTk x(n) = x(n− k mod n).

Roots of the Unity A n-root of the unity is any z such that it
is a solution of the polynomial zn = 1. Informally, a primitive
root of the unity is a generator of all the other roots. Given ω a
primitive root, some properties of interest are

∑n−1
m=0 ω

m = 0,
|ω| = 1, etc. . . Given sk ∈ Cn such that sk(n) = ωkn, we have
sk ⊥ sl ⇐⇒ k 6= l.

The Discrete Fourier Transform We define the DFT as:

DFTk x =

n−1∑
m=0

x(m)ωmk.

The definition in matrix form is also concise and convenient:

Definition W := \matrix_(i < n, j < n) ’ω ˆ+ (i∗j).

Linearity follows directly, while the shifting lemma:

DFTk(SHIFTm x) = ωmk DFTk x

can be proved in 3 lines.

Convolution The relation of DFT with convolution is a key prop-
erty; using the efficient form of the DFT (FFT), we can perform
convolution — and thus FIR filtering — in O(n log n) vs O(n2).

Definition 1 (Circular Convolution).

(x ~ y)(k) =

n−1∑
m=0

x(m)y(k − m)

Theorem 1 (Circular Convolution).

DFTk (x ~ y) = DFTk x · DFTk y

Commutativity of convolution needs 3 lines of proof; the convo-
lution theorem, 5.

Unitary Property Define the Hermitian transpose of a matrix
A∗ ≡ AT . A matrix is unitary if A∗A = AA∗ = I. This
states that the columns of A are orthogonal. For the DFT matrix
W, we have W∗W = WW∗ = nI, and thus its normalized form
W̃ = 1√

n
W is unitary.

The Power Theorem In particular, this implies the power theorem:

〈x, y 〉 = 1

N
〈DFT x, DFT y 〉

of which an easy corollary is Parseval’s:

‖x‖2 =
1

N
‖DFT x‖2 .

3. What’s next?
We are still working on completing and cleaning up the development:
improving naming, trying to find the best interfaces for some
of our tasks — namely exponentiation modulo, inner products,
Vandermonde or unitary matrices — and exploring other related
finite transforms like [6]. Studying the relation of our approach to
rational trigonometry could be interesting too.

Algebraic Signal Processing The next candidate for mechaniza-
tion is the Z-transform, a generalization of the Fourier transform
that replaces the roots of unity by an arbitrary complex number z .
The Z-transform reduces analysis of linear systems to their “transfer
functions” and “region of convergence”, that is to say, values of z
for which the transform converges.

The Z-transform has been recently mechanized in a classical
setting [15], allowing the verification of linear systems, although no
convolution is included.

Unfortunately for us, the Z-transform is essentially defined as
an infinite time summation, which doesn’t translate well to the
approach we have followed here. Notwithstanding, there exists work
in algebraic signal processing [1, 14] that allows the definition of
a finitary version of the Z-transform based on polynomial algebras.
The concrete details are outside of the scope of this abstract, but
the basic idea is to view linear filters as an algebra A, with filtering
defining an A-module over the vector space V of signals. In this
setting, the values z ∈ ROC act as generators for the polynomial
algebras, with elements in the sequence space `1 for the infinite
time case, etc...

Going to the Infinite It would be very interesting to extend our
formalization to the infinite-dimensional case. However, we would
lose the great convenience that the big operators and linear algebra
libraries offer.

Extending big operators to handle infinite sums is far from trivial,
we believe that mainly due to convergence issues. Indeed, in [15]
linearity theorems for the Z-transform only hold if z ∈ ROC . A
possibility would be to pack convergence proofs in the operator
itself, or to extend the base type to include elements capturing
divergence, as done in other approaches.

Efficient, Certified Computation It could be worth to try to use
existing tools for effective linear algebra [9] to achieve verified
computation of the DFT. It would mainly require computation over
the algebraic numbers; the rest would be captured by the existing
matrix multiplication. Going beyond that and refining the algorithm
to the FFT [7] is possible, but likely to be quite challenging.

References
[1] Algebraic Theory of Signal Processing. 2015. URL: https:

//www.ece.cmu.edu/~smart/research.html (visited
on 04/01/2015).

[2] C. Auger. “Compilation Certifiée de SCADE/LUSTRE”.
http://tel.archives-ouvertes.fr/tel-00818169/.
Thèse de Doctorat. Université Paris-Sud, Feb. 2013.

[3] G. Berry. “The foundations of Esterel”. In: Proof, Language,
and Interaction, Essays in Honour of Robin Milner. The MIT
Press, 2000, pp. 425–454.

[4] Y. Bertot et al. “Canonical Big Operators”. In: Theorem Prov-
ing in Higher Order Logics, 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Pro-
ceedings. Vol. 5170. Springer, 2008, pp. 86–101.

[5] S. Boldo, C. Lelay, and G. Melquiond. “Coquelicot: A User-
Friendly Library of Real Analysis for Coq”. English. In:
Mathematics in Computer Science (2014), pp. 1–22.

[6] J. C. Brown. “Calculation of a constant Q spectral transform”.
In: The Journal of the Acoustical Society of America 89.1
(1991), pp. 425–434.

[7] V. Capretta. “Certifying the Fast Fourier Transform with Coq”.
In: Theorem Proving in Higher Order Logics, 14th Interna-
tional Conference, TPHOLs 2001, Edinburgh, Scotland, UK,
September 3-6, 2001, Proceedings. Vol. 2152. Springer, 2001,
pp. 154–168.

[8] L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. “C-CoRN, the
Constructive Coq Repository at Nijmegen”. In: Mathematical
Knowledge Management, Third International Conference,
MKM 2004, Bialowieza, Poland, September 19-21, 2004,
Proceedings. Vol. 3119. Springer, 2004, pp. 88–103.

https://www.ece.cmu.edu/~smart/research.html
https://www.ece.cmu.edu/~smart/research.html
https://www.ece.cmu.edu/~smart/research.html
http://tel.archives-ouvertes.fr/tel-00818169/
http://dx.doi.org/10.1007/978-3-540-71067-7_11
http://dx.doi.org/10.1007/s11786-014-0181-1
http://dx.doi.org/10.1007/s11786-014-0181-1
http://dx.doi.org/http://dx.doi.org/10.1121/1.400476
http://dx.doi.org/10.1007/3-540-44755-5_12
http://dx.doi.org/10.1007/978-3-540-27818-4_7
http://dx.doi.org/10.1007/978-3-540-27818-4_7

[9] M. Dénès, A. Mörtberg, and V. Siles. “A refinement-based
approach to computational algebra in COQ”. In: ITP - 3rd
International Conference on Interactive Theorem Proving -
2012. Vol. 7406. Springer. Princeton, USA: Springer, 2012,
pp. 83–98.

[10] G. Gonthier. “Point-Free, Set-Free Concrete Linear Alge-
bra”. In: Interactive Theorem Proving - Second International
Conference, ITP 2011, Berg en Dal, The Netherlands, August
22-25, 2011. Proceedings. Vol. 6898. Springer, 2011, pp. 103–
118.

[11] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale
Reflection Extension for the Coq system. Research Report
RR-6455. 2008.

[12] GRAME. The Faust Project. 2014. URL: http://faust.
grame.fr/ (visited on 04/01/2015).

[13] C. Lelay. More than real analysis in Coq. 2014. URL: http:
//www.ens-lyon.fr/LIP/AriC/MSC2014/clelay.pdf.

[14] M. Püschel and J. M. F. Moura. “Algebraic Signal Processing
Theory”. In: CoRR abs/cs/0612077 (2006).

[15] U. Siddique, M. Y. Mahmoud, and S. Tahar. “On the For-
malization of Z-Transform in HOL”. In: Interactive Theorem
Proving - 5th International Conference, ITP 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 14-17, 2014. Proceedings. Vol. 8558. Springer, 2014,
pp. 483–498.

[16] J. O. Smith III. Audio Signal Processing in Faust. June 8, 2013.
URL: https://ccrma.stanford.edu/~jos/aspf/.

[17] J. O. Smith III. Introduction to Digital Filters: with Audio
Applications. W3K Publishing, Oct. 2007.

[18] J. O. Smith III. Mathematics of the Discrete Fourier Transform
(DFT): with Audio Applications. 2nd. W3K Publishing, Apr.
2007.

[19] J. O. Smith III. Spectral Audio Signal Processing. W3K
Publishing, Dec. 2011.

http://dx.doi.org/10.1007/978-3-642-32347-8_7
http://dx.doi.org/10.1007/978-3-642-32347-8_7
http://dx.doi.org/10.1007/978-3-642-22863-6_10
http://dx.doi.org/10.1007/978-3-642-22863-6_10
https://hal.inria.fr/inria-00258384
https://hal.inria.fr/inria-00258384
http://faust.grame.fr/
http://faust.grame.fr/
http://faust.grame.fr/
http://www.ens-lyon.fr/LIP/AriC/MSC2014/clelay.pdf
http://www.ens-lyon.fr/LIP/AriC/MSC2014/clelay.pdf
http://www.ens-lyon.fr/LIP/AriC/MSC2014/clelay.pdf
http://arxiv.org/abs/cs/0612077
http://arxiv.org/abs/cs/0612077
http://dx.doi.org/10.1007/978-3-319-08970-6_31
http://dx.doi.org/10.1007/978-3-319-08970-6_31
https://ccrma.stanford.edu/~jos/aspf/
https://ccrma.stanford.edu/~jos/aspf/
https://ccrma.stanford.edu/~jos/filters/
https://ccrma.stanford.edu/~jos/filters/
https://ccrma.stanford.edu/~jos/mdft/
https://ccrma.stanford.edu/~jos/mdft/
https://ccrma.stanford.edu/~jos/sasp/

	Introduction and Motivation
	The Basic Ingredients
	What's next?

