
Towards a Generic Coq Proof of the Truthfulness1

of Vickrey–Clarke–Groves Auctions for Search∗
2

Pierre Jouvelot1
3

MINES ParisTech, PSL University, France4

pierre.jouvelot@mines-paristech.fr5

Lucas Massoni Sguerra6

MINES ParisTech, PSL University, France7

lucas.sguerra@mines-paristech.fr8

Emilio J. Gallego Arias9

Inria Paris, France10

e@x80.org11

Abstract12

We present elements of a Coq/SSReflect proof of the truthfulness of the Vickrey-Clarke-Groves13

(VCG) auction algorithm for sponsored search (VCG for Search), variants of which are daily used by14

companies such as Google and Facebook for their advertising engines. We start from a formalization15

of the more general VCG mechanism, for which proving truthfulness, i.e., that bidders get the best16

utility by bidding their true value, is somewhat easy. We then show how VCG for Search can be17

seen as a functional instance of this mechanism, thus getting among other properties and for almost18

free a proof of a restricted version of the truthfulness of VCG for Search. Future work will focus on19

extending this preliminary result to the full theorem.20

2012 ACM Subject Classification Theory of computation → Algorithmic mechanism design21

Keywords and phrases Formal verification, VCG auction, Sponsored search, Truthfulness22

Acknowledgements We want to thank Tim Roughgarden (Columbia U., USA) for his great CS269I23

lecture notes and kind advice and Olivier Hermant (MINES ParisTech).24

1 Introduction25

Auctions for advertising space are a financial pillar of most internet-based sponsored search26

services such as Google. Each time a search request is performed by a user, interested digital27

publicity marketers automatically bid for the result-included web-page real estate dedicated28

to sponsored answers in order to promote their clients’ products; this is done billions of times29

a day [6]. The correctness of the auction mechanisms implemented by these providers is thus30

of paramount concern, even more so when one envisions the possible future use of auctions31

in blockchain-based smart contracts, where code cannot be modified to correct bugs [1].32

Getting formal assurance that auction algorithms are correct using proof assistants has33

been studied before (e.g., [3], [2], [4] or [5]). Our focus is on the Vickrey-Clark-Groves auction34

algorithm for sponsored search (VCG for Search), variants of which are heavily used in35

the industry [6]. We are also interested in studying how much the notion of instantiating36

mechanisms (see below) to algorithms can ease proof transfer, here for VCG for Search.37

Using Coq/SSReflect, our contributions are (1) a specification of the VCG for Search38

algorithm, (2) a specification of the General VCG mechanism, together with proofs of three39

properties, namely no positive transfer, agent rationality and truthfulness (bidders get the40

∗ MINES ParisTech, CRI, Technical Report A/748/CRI, March 2021.
1 Corresponding author.

mailto:pierre.jouvelot@mines-paristech.fr
mailto:lucas.sguerra@mines-paristech.fr
mailto:e@x80.org

2 Coq Proof of VCG Truthfulness

Listing 1 VCG for Search algorithm, assumming bs is sorted
Definition ctrs := k.−tuple ctr.
Definition bids := n.−tuple bid.

Variable (cs : ctrs).
Notation "’ctr_ s" := (tnth cs s) (at level 10).
Hypothesis sorted_ctrs : sorted_tuple cs.

Variable (bs : bids).
Notation "’bid_ j" := (tnth bs j) (at level 10).

Lemma slot_as_agent_p (s : slot) : s < n.
Definition slot_as_agent (s : slot) := Ordinal (slot_as_agent_p s).
Definition slot_pred (s : slot) : slot := ·ord_pred k s.

Definition externality (s : slot) :=
let j := slot_as_agent s in
’ bid_j ∗ (’ctr_(slot_pred s) − (’ctr_s)).

Definition price (i : A) :=
if i < k then \sum_(s < k | i.+1 <= s) externality s else 0.

best utility by bidding their true value), and (3) a proof that VCG for Search is an instance41

of General VCG, which (4) helps translating these property proofs to this specialized case.42

2 VCG for Search43

In a VCG for Search auction, k slots, of type slot, have to be distributed among n bidders, or44

“agents”, of type A, each of which providing a particular bid; one assumes that k < n. These45

slots typically correspond to a particular frame of a Web page, characterized by its statistical46

“click-through rate”, in ctr , where the winning bidder’s ad will be inserted. All these types47

are finite ordinals, e.g. ’I_n for A, i.e., the sets of bounded natural numbers, here in [0, n[.48

An auction is defined by two tuples, in ctrs and bids, indexed by slots and agents. The49

VCG for Search algorithm, given in Listing 1 (in the whole paper, Coq/SSReflect proofs are50

omitted, and some slight editing has been performed), expects thus as input a tuple cs of51

down-sorted rates and a tuple bs of bids, assumed as well to be down-sorted (see below).52

The agent i wins slot i (with thus i < k), paying for it price(i) to offset the negative impact53

on the global social welfare incurred by her presence. This value, as proposed by Vickrey,54

Clarke and Groves, is the sum of all the externalities, i.e., financial losses, of the agents55

ranked after i according to bs, who thus do not get slot i.56

For example, if cs = (5, 3, 1) and bs = (100, 50, 10, 4), then agent 0 will get slot 0 and pay57

50 ∗ (5 − 3) + 10 ∗ (3 − 1) + 4 ∗ 1 = 124; agent 1, slot 1 for 10 ∗ (3 − 1) + 4 ∗ 1 = 24; and agent58

2, slot 2 for 4 ∗ 1 (agent 3 gets nothing; cs[3] is assumed 0).59

3 General VCG60

VCG for Search is a particular instance of General VCG, an auction mechanism (see Section 4).61

For functional programmers, a “mechanism” is simply a higher-order function or module,62

here VCG. General VCG, in Listing 2, is abstracted over the type O of possible auction63

P. Jouvelot, L. Massoni Sguerra, E. J. Gallego Arias 3

Listing 2 General VCG mechanism
Variable (O : finType) (o0 : O) (i : A).

Definition bidding := {ffun O → nat}.
Definition biddings := n.−tuple bidding.

Variable (bs : biddings).
Local Notation "’bidding_ j" := (tnth bs j) (at level 10).

Implicit Types (o : O) (bs : biddings).

Definition bidSum o := \sum_(j < n) ’bidding_j o.
Definition bidSum_i o := \sum_(j < n | j != i) ’bidding_j o.

Definition oStar := [arg max_(o > o0) (bidSum o)].

Definition welfare_with_i := bidSum_i oStar.
Definition welfare_without_i := \max_o bidSum_i o.

Definition price := welfare_without_i − welfare_with_i.

outcomes, a particular instance o0 (to ensure non-emptiness) and an agent i. Here, any64

agent, among n, is defined by its bidding, a finite function that values any possible outcome65

in the Coq domain nat of natural numbers. General VCG, given its last parameter, a tuple66

bs of biddings, must compute the outcome oStar that maximizes the total bidSum o of bids.67

In a truthful mechanism (see below), where the bids of agents and their “values” coincide,68

this outcome maximizes the global good, or “welfare”. For agent i, the price she accordingly69

has to pay to win whatever is in oStar for her is a penality induced by the impact on the70

global good of her presence in the bidding process (welfare_with_i) compared to when she71

is not (welfare_without_i, which would have yielded a possibly different optimal outcome).72

We formally prove that General VCG enjoys useful properties such as “no positive transfer”73

(all prices are positive, and thus the auctioneer does not have to pay bidders), rationality (for74

any agent, the price is less than the value of the outcome for him) and the most important75

one, truthfulness (see Listing 3). General VCG assumes the existence, for any agent i, of a76

valuation value i that he assigns to any outcome in O. The utility of the bidding result for i,77

among n agents bidding bs, is then the difference between whatever the perceived value is78

and the price paid (note the three explicit arguments to the mechanism functions oStar and79

price). The truthfulness property that Theorem truthful expresses is key. It states, that all80

things being equal, as stated by differ_onlyi , the only way i can increase its utility is by81

bidding, for any outcome o, what is for him its true value in o.82

4 VCG for Search as a General VCG Instance83

Formally showing that VCG for Search is an instance of General VCG requires constructively84

showing there exist values O, o0 and BS such that, for any agent i and bids bs, one can prove85

that the VCG for Search price bs i is equal to the General VCG VCG.price O o0 i BS (the86

prefix VCG shows that we put General VCG in a Coq module). We exhibit these proper87

definitions in Listing 4, where we introduce the biddings function that maps any tuple of88

bids bs to its appropriate General VCG version.89

4 Coq Proof of VCG Truthfulness

Listing 3 Truthfulness of General VCG (i is defined previously)
Variable (value : bidding O).

Definition utility bs := value (·oStar O o0 bs) − (·price O o0 i bs).

Definition differ_only_i bs’ :=
forall j, j != i → tnth bs’ j = ’bidding_j.

Theorem truthful bs’ :
’ bidding_i =1 value →

differ_only_i bs’ →
utility bs’ <= utility bs.

Listing 4 VCG for Search parameters for General VCG
Notation "’bidders" := (k.−tuple A) (at level 10).

Structure O :=
Outcome {obidders :> ’bidders;

ouniq : uniq obidders}.

Variable (bs : bids).
Notation "’bid_ j" := (tnth bs j) (at level 10).
Hypothesis sorted_bs : sorted_bids bs.

Definition bid_in (j : A) (s : slot) := ’bid_j ∗ ’ctr_s.
Definition t_bidding (j : A) (o : ’ bidders) :=

if j \in o then bid_in j (slot_of j o) else 0.
Definition bidding (j : A) := [ffun o : O ⇒ t_bidding j (obidders o)].
Definition biddings := [tuple bidding j | j < n].

Definition t_oStar := [tuple widen_ord le_k_n j | j < k].
Lemma oStar_uniq : uniq t_oStar.
Definition oStar := Outcome oStar_uniq.

A VCG for Search outcome, in O, is a k-tuple of agents that satisfies the uniq predicate,90

enforcing no repetition of agents. Note that a set wouldn’t be appropriate here, since the91

order of agents matters for computing prices. For any bs, the corresponding BS is defined92

as biddings bs, an n-tuple of finite functions mapping any outcome o to a natural number.93

As seen in t_bidding, any agent j, if present in a given outcome o, bids in General VCG94

the value ′bid_j ∗ ′ctr_ s, where s is the slot number of j in o; otherwise, he bids 0. For95

the final parameter, o0 , we can use oStar , which is the k-tuple that includes the highest k96

bidders. These are the winning ones according to VCG for Search, and we indeed prove that97

oStar maximizes the VCG for Search-specific global welfare.98

5 Truthfulness of VCG for Search99

The main advantage of showing that VCG for Search is an instance of General VCG is that we100

can reuse the formal proofs of the latter’s properties to help prove the same for VCG for Search.101

We focus on truthfulness. Here an additional parameter, namely value_par_click, needs102

to be specified, taking into account that VCG for Search deals with per-click prices, while103

P. Jouvelot, L. Massoni Sguerra, E. J. Gallego Arias 5

Listing 5 Equivalence of utilities (sOi coerces agents to slots)
Section Utility.

Variable (bs0 : bids) (i i’ : A) (iwins : relabelled_i_in_oStar i i’ bs0).
Let bs := tsort bs0.

Definition click_rate := (’ctr_(sOi i’))%:Q.

Definition per_click (n : nat) := n%:Q / click_rate.

Definition price_per_click := per_click (relabelled_price bs0 i’).

Definition utility_per_click :=
(* max needed since VCG.utility is a nat. *)
maxr ((value_per_click i)%:Q − price_per_click) 0.

Definition utility := utility_per_click ∗ click_rate.

Definition vcg_utility (i : A) v bs := (VCG.utility o0 i v bs)%:Q.

Definition value_bidding :=
[ffun o : O ⇒ (value_per_click i ∗ ’ctr_(sOi i’))%nat].

Lemma eq_VCG_utility :
0 < click_rate → utility = vcg_utility i’ value_bidding (biddings bs).

End Utility.

General VCG parameters we used up to here do not (we use rationals, in the ring Q). Listing 5104

shows how value_per_click is combined with click rates to build the argument value_bidding105

passed to VCG.utility. We prove, in Lemma eq_VCG_utility, that VCG.utility is indeed106

equal to the VCG for Search-specific utility. The function utility_per_click uses the max107

function to force the utility to be positive, since we use natural numbers in the VCG module.108

Note that the lemma uses two additional conditions. The first one is iwins; it ensures that109

agent i is indeed a winner, meaning that its “relabelled self” i′, after the required sorting110

down, via tsort, of the initial bids bs0 , is indeed among the winners, the k first bidders, in111

oStar . And, since we are dealing with per-click utilities, the click rate must also be non-null.112

The main lemma, VCGforSearch_stable_truthful, is stated in Listing 6. Two additional113

conditions are needed to prove the truthfulness of VCG for Search. The first one is similar114

to iwins, discussed previously, but applies when i bids differently, as expressed in bs0 ′. Note115

that here i is supposed, in both cases, to be relabelled as the same agent i′, i.e., at the116

same position in the sorted bids, via the sorting process, thus limiting this lemma to “stable”117

changes of i’s bid. The second condition, uniq_oStar ′, states that the only optimal outcome118

is oStar , which we conjecture is only true when all bids are distinct (when there are equal119

bids, the agents could be swapped). We discuss these two issues in Section 6.120

The main advantage of the previous proof that VCG for Search is an instance of121

General VCG is that the proof of VCGforSearch_stable_truthful relies mainly on a Coq122

apply : VCG.truthful command.123

6 Coq Proof of VCG Truthfulness

Listing 6 Truthfulness of VCG for Search
Definition value_per_click_is_bid :=
[forall o : O, per_click i’ (bidding (tsort bs0) i’ o) == (value_per_click i)%:Q].

Definition differ_only_i (bs bs’ : bids) :=
forall (j : A), j != i’ → tnth bs’ j = tnth bs j.

Lemma vcg_differ_only_i (bs1 bs2 : bids)
(diffi : differ_only_i bs1 bs2) :

VCG.differ_only_i i’ (biddings bs1) (biddings bs2).

Lemma VCGforSearch_stable_truthful (bs0’ : bids)
(iwins’ : relabelled_i_in_oStar i i’ bs0’)
(uniq_oStar’ : singleton (max_bidSum_spec (tsort bs0’))) :

value_per_click_is_bid →
differ_only_i bs (tsort bs0’) →
utility bs0’ i i’ <= utility bs0 i i’.

6 Future Work124

This formalization lacks the full theorem regarding VCG for Search truthfulness, i.e., when i is125

not stable in bs0′. The expected constraint for this would be relabelled_i_in_oStar i i ′′ bs0 ′,126

for some proper i′′. It is not yet clear how this can be obtained without digging into the127

specifics of the VCG for Search algorithm.128

A couple of assumptions also remain in the current framework. The first assumes that129

all the outcomes that maximize the global welfare are equal, which is not true, since one130

could swap two agents with identical bids. A proof of the irrelevance of this choice would be131

warranted. A second one has to do with the simple sorting process of bids, tsort, and other132

tuples; a few properties related to this sorting process are presently assumed.133

Finally, looking at other variants of VCG for Search could be interesting, since real-time134

auctions now include more advanced features than static click-through rates.135

7 Conclusion136

We describe on-going work that intends to provide a Coq/SSReflect formalization of the137

VCG for Search auction algorithm and of its properties, derived, as much as possible, from138

its instantiability from the General VCG mechanism. The whole project is open source and139

available at https://github.com/jouvelot/VCG_Stable.140

References141

1 Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, and Abdelhamid Mellouk.142

Verification of smart contracts: A survey. Pervasive and Mobile Computing, 67:101227,143

2020. URL: http://www.sciencedirect.com/science/article/pii/S1574119220300821,144

doi:https://doi.org/10.1016/j.pmcj.2020.101227.145

2 Wei Bai, Emmanuel M. Tadjouddine, and Yu Guo. Enabling automatic certification of online146

auctions. Electronic Proceedings in Theoretical Computer Science, 147:123–132, Apr 2014.147

URL: http://dx.doi.org/10.4204/EPTCS.147.9, doi:10.4204/eptcs.147.9.148

https://github.com/jouvelot/VCG_Stable
http://www.sciencedirect.com/science/article/pii/S1574119220300821
https://doi.org/https://doi.org/10.1016/j.pmcj.2020.101227
http://dx.doi.org/10.4204/EPTCS.147.9
https://doi.org/10.4204/eptcs.147.9

P. Jouvelot, L. Massoni Sguerra, E. J. Gallego Arias 7

3 Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and149

Pierre-Yves Strub. Computer-aided verification in mechanism design. CoRR, abs/1502.04052,150

2015. URL: http://arxiv.org/abs/1502.04052, arXiv:1502.04052.151

4 Marco B Caminati, Manfred Kerber, Christoph Lange, and Colin Rowat. Sound auction152

specification and implementation. Discussion papers, Department of Economics, University of153

Birmingham, 2015. URL: https://EconPapers.repec.org/RePEc:bir:birmec:15-08.154

5 Manfred Kerber, Christoph Lange, Colin Rowat, and Wolfgang Windsteiger. Developing an155

Auction Theory Toolbox. In Manfred Kerber, Christoph Lange, and Colin Rowat, editors,156

AISB 2013, pages 1–4, 2013. proceedings available online. URL: http://www.cs.bham.ac.uk/157

research/projects/formare/events/aisb2013/proceedings.php.158

6 Tim Roughgarden. Twenty Lectures on Algorithmic Game Theory. Cambridge University159

Press, 2016. doi:10.1017/CBO9781316779309.160

http://arxiv.org/abs/1502.04052
http://arxiv.org/abs/1502.04052
https://EconPapers.repec.org/RePEc:bir:birmec:15-08
http://www.cs.bham.ac.uk/research/projects/formare/events/aisb2013/proceedings.php
http://www.cs.bham.ac.uk/research/projects/formare/events/aisb2013/proceedings.php
http://www.cs.bham.ac.uk/research/projects/formare/events/aisb2013/proceedings.php
https://doi.org/10.1017/CBO9781316779309

	Introduction
	VCG for Search
	General VCG
	VCG for Search as a General VCG Instance
	Truthfulness of VCG for Search
	Future Work
	Conclusion

