
The W-calculus:

A Synchronous Framework for the Verified Modelling

of Digital Signal Processing Algorithms

Emilio Jesús Gallego Arias
Équipe 𝜋𝑟 2, Inria Paris

Paris, France
e@x80.org

Pierre Jouvelot
MINES ParisTech, PSL University

Paris, France
pierre.jouvelot@mines-paristech.fr

Sylvain Ribstein
France

sylvain.ribstein@gmail.com

Dorian Desblancs
École normale supérieure Paris-Saclay

France
dorian.desblancs@ens-paris-saclay.fr

Abstract

We introduce theW-calculus, an extension of the call-by-
value λ-calculus with synchronous semantics, designed to be
flexible enough to capture different implementation forms
of Digital Signal Processing algorithms, while permitting a
direct embedding into the Coq proof assistant for mecha-
nized formal verification. In particular, we are interested in
the different implementations of classical DSP algorithms
such as audio filters and resonators, and their associated
high-level properties such as Linear Time-invariance.

We describe the syntax and denotational semantics of the
W-calculus, providing a Coq implementation. As a first ap-
plication of the mechanized semantics, we prove that every
program expressed in a restricted syntactic subset ofW is
linear time-invariant, by means of a characterization of the
property using logical relations. This first semantics, while
convenient for mechanized reasoning, is still not useful in
practice as it requires re-computation of previous steps. To
improve on that, we develop an imperative version of the se-
mantics that avoids recomputation of prior stream states. We
empirically evaluate the performance of the imperative se-
mantics using a staged interpreter written in OCaml, which,
for an input program inW , produces a specialized OCaml
program, which is then fed to the optimizing OCaml com-
piler. The approach provides a convenient path from the
high-level semantical description to low-level efficient code.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
FARM ’21, August 27, 2021, Virtual, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8613-5/21/08. . . $15.00
https://doi.org/10.1145/3471872.3472970

CCSConcepts: •Computer systems organization→Re-

al-time languages; • Software and its engineering →
Formal software verification.

Keywords: Digital Signal Processing, Programming Langua-
ge Semantics, Synchronous Programming, Formal Verifica-
tion, Linear Time-invariance
ACM Reference Format:

Emilio Jesús GallegoArias, Pierre Jouvelot, Sylvain Ribstein, andDo-
rian Desblancs. 2021. TheW-calculus: A Synchronous Framework
for the Verified Modelling of Digital Signal Processing Algorithms.
In Proceedings of the 9th ACM SIGPLAN International Workshop on
Functional Art, Music, Modelling, and Design (FARM ’21), August 27,
2021, Virtual, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3471872.3472970

1 Introduction

Real-time Digital Signal Processing (DSP) lies at the frontier
between the physical reality and the digital world. Mobile
applications, data acquisition, wireless radio,...: real-time
DSP is pervasive and used in every digital device.
One key domain where DSP thrives is music, where all

digital audio formats can be interpreted as clocked “streams”
of discrete “samples”. which can be tweaked and processed
via programming. The realm of computer music has thus
been a steady provider of music-oriented DSP programming
languages that offer a wide variety of approaches to handle
domain-specific applications.

DSP programming is however notoriously known for pos-
ing difficult challenges. For instance, crucial properties are
often not preserved under composition, making modular rea-
soning difficult; stream, buffer, timing, and memory handling
is costly and error prone if done manually.
There is a wide spectrum of research trying to provide

definitive answers to all or some of the previous problems. In
particular, some domain-specific languages (DSL) for DSP aim
to provide more convenient programming models, allowing
programmers to produce code closer to the mathematical

35

https://orcid.org/0000-0002-9299-1192
https://orcid.org/nnnn-nnnn-nnnn-nnnn
https://doi.org/10.1145/3471872.3472970
https://doi.org/10.1145/3471872.3472970

FARM ’21, August 27, 2021, Virtual, Republic of Korea E.J. Gallego Arias, P. Jouvelot, S. Ribstein, and D. Desblancs

specification of the process they intend to implement, while
cumbersome or repetitive details are taken care of by the
toolchain. On the other side, program verification techniques
aim to support rigorous code analysis, pointing out possible
defects or problems, and constructing correctness certificates
that can provide guarantees in high-assurance environments.

However, practical, provably-correct development of DSP
systems is still an open problem: the use — due to efficiency
and compatibility — of low-level implementation languages
does not mix well with the mathematical nature of the spec-
ifications; existing state-of-the-art verification techniques
either incur an insurmountable overheard, or are severely
limited in what they can prove.

1.1 Design Goals

The core goal of this work is to provide a unified core mech-
anism to bridge performance and verification concerns for
DSP programming.
With the introduction of the W-calculus, we start an

experiment in DSL design with a triple objective: a) to have
a good basis for a declarative DSP language amenable to
state-of-the-art interactive verification, able to handle com-
plex properties, such as linearity, bound properties, or filter
equivalence; b) to ensure the language can accommodate
the performance requirements of real-time processing, in
particular in terms of memory allocation; and c) to provide
a formal basis upon which to develop a full-fledged usable
front-end and compiler, amenable to use by DSP experts.
We have been careful to ensure that the language re-

mains low-level enough to distinguish among different im-
plementation strategies, such as the different forms for filters,
which are extremely important when reasoning about nu-
merical properties. While we don’t address the verification of
floating-point numerical properties of filters in this paper, it
is important that our semantics remain compatible with this
future line of work; thus approaches to program interpreta-
tion that may involve non-stable numerical transformations
have been ruled out.

1.2 Key Contributions and Structure of the Paper

We present the work in two main parts.
1. Section 2 describes theW-calculus, including syntax,

design discussion, examples, and formal denotational
semantics, defined using the Coq integrative proof
assistant. Section 2.4 develops a concrete use case of
the mechanized semantics: a proof that every well-
typed program in theW-calculus is a linear function,
in the sense of Linear Time-Invariant (LTI) systems.

2. Section 3 introduces an imperative semantics for the
W-calculus programs, provided these programs per-
form only bounded accesses on streams’ past values.
This allows for buffers to be statically allocated. We

implement the imperative semantics as a staged inter-
preter, which produces low-level, efficient code. Ex-
perimental run-time performance evaluation is done
comparing the efficiency of the generated code versus
hand-written versions of the same programs.

We conclude the paper with discussion on related (Sec-
tion 4) and future (Section 5) work.
The source code for programs and proofs referenced in

this paper can be found at https://github.com/ejgallego/mini-

wagner-coq/.

1.3 Mathematical Preliminaries

We assume the reader to be familiar with basic functional
programming notation and typing judgments. Unless oth-
erwise specified, we use as our mathematical and logical
universe Coq’s type theory, and in particular the mathemati-
cal objects such as matrices and number structures provided
by the Mathematical Components library. While we do use
LATEX-improved notation in the paper, all the definitions have
a direct correspondence with their Coq counterpart. In the
second part of the paper, we will assume familiarity with
OCaml’s syntax.
In particular, we rely on the definition of a numeric type

R, or R, which in our case is assumed to be an integral do-
main (basically a non-zero commutative ring), n-ary tuples
of elements, written as n.-tuple A for elements of type A,
with elements written using list-like notation [:: e1, ...,
en], and one-column matrices of dimension 𝑎, written as
’cV[R]_a. All these types are already equipped with their
corresponding operations, such as nth for accessing the n-th
element of a tuple or list.

On the DSP side, we mainly follow the conventions in [54].
In this setting, streams are time-indexed functions, usually
returning samples; negative-time access is assumed to return
zero, so one can write 𝑦 (𝑛) = 𝑥1 (𝑛−1) +𝑥2 (𝑛−2) to define a
delay 𝑦 that takes two streams 𝑥1 and 𝑥2 and delays them by
different amounts, 1 and 2, before mixing them. We also use
a shift operator for streams defined as 𝑥 |𝑘 (𝑛) = 𝑥 (𝑛−𝑘). It is
also common to write 𝑥 ′ for 𝑥 ′(𝑛) = 𝑥 (𝑛−1), that is to say, a
one-sample delay. We restrict ourselves to causal definitions,
that is to say, filters cannot refer to values in the future or
introduce ill-defined definitional loops. In this setting, the
definition of a linear time-invariant filter 𝑓 is such that

𝑓 (𝑥 |𝑘) = 𝑓 (𝑥)|𝑘 and
𝑓 (𝑐 (𝑥1 + 𝑥2)) = 𝑐 𝑓 (𝑥1) + 𝑐 𝑓 (𝑥2).

2 TheW-calculus

2.1 Syntax

The syntax of W expressions 𝑒, 𝑓 and types 𝜏 is given in
Figure 1. Given a base sample type R,W ’s types are either
n-tuples or functions from one tuple to another. For example,
a stereo-to-mono program will have type R2 → R1, etc. We
write R for R1 when it is clear from the context.

36

https://github.com/ejgallego/mini-wagner-coq/
https://github.com/ejgallego/mini-wagner-coq/

TheW-calculus: A Synchronous Framework for the Verified Modelling of . . . FARM ’21, August 27, 2021, Virtual, Republic of Korea

types expressions

𝜏 ::= R𝑎 𝑎 ∈ N
| R𝑎 → R𝑏

𝑎, 𝑏 ∈ N

𝑒, 𝑓 ::= 𝑥𝑘 𝑘 ∈ N
𝑥 ∈ V

| 𝜆𝑥 .𝑒

| 𝑓 𝑒

| 𝑐 ∗ 𝑒 𝑐 ∈ R
| 𝑒1 + 𝑒2
| 𝜋𝑖 (𝑒) 𝑖 ∈ N, 𝑖 > 0
| (𝑒1, 𝑒2)
| feed 𝑥 .𝑒

Figure 1. Syntax of W expressions and types

Expressions, which denote discrete “streams” of quantified
samples, are standard, except for two cases: variables and
feedback. A variable 𝑥 𝑗 denotes 𝑥 ’s value at time step 𝑛 − 𝑗 ,
where 𝑛 is the current time step; note that we write 𝑥 for
𝑥0 when it is clear from the context, and let 𝑥 = 𝑒1 in 𝑒2
for (𝜆𝑥 .𝑒2) 𝑒1. The second interesting case is the feedback
expression feed 𝑥 .𝑒 , which implements causal self-referential
expressions. For example, assuming the addition to W of
straightforward syntactic extensions such as infix operators,
constants and the like, feed 𝑥 .𝑥 + 1 will implement a counter,
with value 𝑛, where 𝑛 is again the global time. References
to 𝑥 inside 𝑒 are always assumed to start in the previous
time step, to avoid causality problems; thus the previous
example can be read in mathematical form (not W ’s syntax)
as 𝑥𝑛+1 = 𝑥𝑛 + 1, assuming 𝑥 at time step 0 or less is always
zero, for any 𝑥 .
Typing is also standard in our system, with rules shown

in Figure 2. Note that products are the concatenated tuples
of their projections, instead of the usual structural approach.

2.2 Examples

This calculus, while simple, can already be used to implement
some core DSP primitives, as shown in Figure 3.

The examples have been taken from [55], and show a typ-
ical second-order infinite impulse response filter, in its two
implementation forms; note howW does actually distinguish
these two filters which, modulo floating-point arithmetic,
are extensionally equivalent. We use the dot product ®𝑏 · 𝑥 as
an abbreviation for 𝑏0 × 𝑥0 + ... + 𝑏𝑎−1 × 𝑥𝑎−1, assuming ®𝑏 is
the constant tuple [𝑏0; ...;𝑏𝑎−1] (in mathematical notation).

The third example is awaveguide resonator, a simple circuit
implementing the wave equation. We write the example first
using a notation natural to the DSP expert, which we then
desugar to the correspondingW expression, using a feedback
over a single variable of the product.

Γ 𝑥 = R𝑎

Γ ⊢ 𝑥𝑘 :R𝑎
Var

Γ, 𝑥 : R𝑎 ⊢ 𝑒 :R𝑏
Γ ⊢ 𝜆𝑥.𝑒 :R𝑎 → R𝑏

Lam

Γ ⊢ 𝑓 :R𝑎 → R𝑏 Γ ⊢ 𝑒 :R𝑎
Γ ⊢ 𝑓 𝑒 :R𝑏

App

𝑐 ∈ R Γ ⊢ 𝑒 :R𝑎
Γ ⊢ 𝑐 ∗ 𝑒 :R𝑎

Scale

Γ ⊢ 𝑒1 :R𝑎 Γ ⊢ 𝑒2 :R𝑎
Γ ⊢ 𝑒1 + 𝑒2 :R𝑎

Add

Γ ⊢ 𝑒 :R𝑎 1 ≤ 𝑖 ≤ 𝑎

Γ ⊢ 𝜋𝑖 (𝑒) :R1
Proj

Γ ⊢ 𝑒1 :R𝑎 Γ ⊢ 𝑒2 :R𝑏
Γ ⊢ (𝑒1, 𝑒2) :R𝑎+𝑏

Prod

Γ, 𝑥 : R𝑎 ⊢ 𝑒 :R𝑎
Γ ⊢ feed 𝑥 .𝑒 :R𝑎

Feed

Figure 2. W typing rules

2.3 Semantics

We present the semantics forW programs as time-indexed
functions mapping syntactic W objects to objects in the
mathematical universe of Coq. Our use of indexing allows
for by-construction causal semantical definition of streams,
while relying only on induction (no co-induction on infinite
streams).
The interpretation ⟦𝜏⟧𝑘

T
for a type 𝜏 at time step 𝑘 is de-

fined in Figure 4. The reader can observe that the index 𝑘
is only relevant for functions, but, indeed, here is the core
idea of our interpretation for stream transformers: a stream
transformer from 𝜏 → 𝜎 at time 𝑘 is a function that will take
𝑘 + 1 values of the input 𝜏 , for the past 𝑘 steps plus the actual
value, producing the value for the current time step. Note
that, in this model, functions at time 𝑘 can access all past
values of their arguments, without a bound.

The semantics for well-typed expressions is defined in
Figure 5. An interpretation function up to time 𝑛, I{𝑛} , for a
well-typed expression Γ ⊢ 𝑒 :𝜏 will take a bounded time step
𝑘 < 𝑛, a well-formed environment for time step 𝑘 , env Γ 𝑘 ,
and will produce an element of the interpretation of its type
𝜏 . Environments are defined as heterogeneous lists, mapping
each typed variable to its history of values. Recall that in our
context, values in environments cannot be functional ones.
The initial interpretation I{0} will map every expression to
the corresponding zero value for the type.

37

FARM ’21, August 27, 2021, Virtual, Republic of Korea E.J. Gallego Arias, P. Jouvelot, S. Ribstein, and D. Desblancs

Second-order recursive filter, DF-I

df1 ≡ 𝜆𝑥. feed 𝑦. ®𝑏 · 𝑥 + ®𝑎 · 𝑦
®𝑎 · 𝑦 = ⟨𝑎0, 𝑎1 ⟩ · ⟨𝑦0, 𝑦1 ⟩ ®𝑏 = ⟨𝑏0, 𝑏1, 𝑏2 ⟩

Second-order recursive filter, DF-II

df2 ≡ 𝜆𝑥. let 𝑣 = feed 𝑣 . 𝑥 + ®𝑎 · 𝑣 in ®𝑏 · 𝑣

Waveguide resonator

feed 𝑥 = 𝐶 · (𝐺 · 𝑥 ′ + 𝑦 ′) − 𝑦 ′
𝑦 = 𝐶 · (𝐺 · 𝑥 ′ + 𝑦 ′) +𝐺 · 𝑥 ′

wgr = feed 𝑧.let 𝑥 = 𝜋1 (𝑧) in let 𝑦 = 𝜋2 (𝑧) in
(𝐶 · (𝐺 · 𝑥 + 𝑦) − 𝑦
,𝐶 · (𝐺 · 𝑥 + 𝑦) +𝐺 · 𝑥)

Figure 3. Example W programs

⟦R𝑎⟧𝑘
T
≜ tuple𝑎 R

⟦R𝑎 → R𝑏⟧𝑘
T
≜ tuple𝑘+1 ⟦R𝑎⟧T → ⟦R𝑏⟧T

Definition tyI k t : Type :=
match t with

| tpair a ⇒ 'cV[R]_a
| tfun a b ⇒ k.+1.−tuple 'cV[R]_a→ 'cV[R]_b
end.

Figure 4. Semantics of W types

Once we have defined what an interpretation is, the core
of the semantics is given by the interpretation transformer
S. We write P, Γ ⊢ 𝑒 :𝜏 , 𝑘 < 𝑛 + 1, and Θ𝑘 , for the first ar-
guments (after unfolding the definition of I{𝑛+1}), such that
SP⟦Γ ⊢ 𝑒 :𝜏⟧𝑘<𝑛+1Θ𝑘

has type ⟦𝜏⟧𝑘
T
as required. The interpreta-

tion transformer is then defined structurally on expressions,
so that, in particular, there is no problem regarding the ter-
mination requirements imposed by Coq, and termination is
detected by Coq’s regular guard checker.
There are a few interesting cases in this definition. For

variables, the environment will contain the history of all
the previous values of this variable; so we can just access it,
or return the 0-interpretation if the access is out of bounds.
Functions are interpreted as regular mathematical functions;
function application builds the full history of the argument
prior to passing it to the interpretation of the function. The
feedback case is, however, a bit more tricky, as we now need
to interpret the feedback expression itself, but over previous

time steps. While we could strengthen our termination con-
dition in Coq, to include both the structural and time-based
orders to define a well-founded recursion, this usually leads
to a complex proof setup, so we chose to untie the recur-
sive call by moving the previous-time interpretation as a
parameter P : I{𝑛} .

We can thus define S by induction on the terms, and then
define the absolute interpretation function I{𝑛} by a simple
induction on time.

2.4 Linearity

While the previous semantics may seem naturally correct,
details are subtle in our context, and validation is required
(the whole point, in fact, of encoding it inside a theorem
prover).
We have proved without too much hassle a few basic

properties such as that expected equations and program
equivalences do hold, as well as checking inside Coq that
the output is what is expected, as we can run the semantics,
albeit quite slowly.
For this section, we focus however on what we think is

a more interesting property that applies to the full set of
well-typedW programs: linearity.

The avid reader may have noticed by now that our core
syntax lacks constants, and indeed this omission is not a
coincidence. We will fix this problem in the next section as
we move towards more practical uses, but for now, we will
forget about constants and proceed to prove a theorem that
states that “all well-typed programs in the W -calculus are
linear”.

38

TheW-calculus: A Synchronous Framework for the Verified Modelling of . . . FARM ’21, August 27, 2021, Virtual, Republic of Korea

S : I{𝑛} → I{𝑛+1} I{𝑛} ≡ expr Γ 𝜏 → ∀ 𝑘, 𝑘 < 𝑛 → env Γ 𝑘 → ⟦𝜏⟧𝑘
T

Θ𝑘 : env Γ 𝑘 ≡ (𝑥 ∈ V) → tuple𝑘+1 ⟦Γ 𝑥⟧
T

SP⟦Γ ⊢ 𝑥𝑚 :R𝑎⟧𝑘<𝑛+1Θ𝑘
≜ nth𝑚 (Θ𝑘 𝑥) 0𝑎, where 0𝑎 ≡ init 𝑎 (fun _→ 0)

SP⟦Γ ⊢ 𝜆𝑥 .𝑒 :R𝑎 → R𝑏⟧𝑘<𝑛+1Θ𝑘
≜ fun hist→ SP⟦Γ, 𝑥 : R𝑎 ⊢ 𝑒 :R𝑏⟧𝑘<𝑛+1Θ𝑘⊎{𝑥←hist}

SP⟦Γ ⊢ 𝑓 𝑒 :R𝑏⟧𝑘<𝑛+1Θ𝑘
≜ SP⟦Γ ⊢ 𝑓 :R𝑎 → R𝑏⟧𝑘<𝑛+1Θ𝑘

hist

where hist ≡ [SP⟦̂e⟧𝑘<𝑛+1Θ𝑘
;SP⟦̂e⟧𝑘−1<𝑛+1Θ𝑘−1

; ...;SP⟦̂e⟧0<𝑛+1Θ0
]

and ê ≡ Γ ⊢ 𝑒 :R𝑎

SP⟦Γ ⊢ 𝑐 ∗ 𝑒 :R𝑎⟧𝑘<𝑛+1Θ𝑘
≜ 𝑐 ∗ SP⟦Γ ⊢ 𝑒 :R𝑎⟧𝑘<𝑛+1Θ𝑘

SP⟦Γ ⊢ 𝑒1 + 𝑒2 :R𝑎⟧𝑘<𝑛+1Θ𝑘
≜ SP⟦Γ ⊢ 𝑒1 :R𝑎⟧𝑘<𝑛+1Θ𝑘

+ SP⟦Γ ⊢ 𝑒2 :R𝑎⟧𝑘<𝑛+1Θ𝑘

SP⟦Γ ⊢ 𝜋𝑖 (𝑒) :R1⟧𝑘<𝑛+1Θ𝑘
≜ [nth 𝑖 (SP⟦Γ ⊢ 𝑒 :R𝑎⟧𝑘<𝑛+1Θ𝑘

) 0]

SP⟦Γ ⊢ (𝑒1, 𝑒2) :R𝑐⟧𝑘<𝑛+1Θ𝑘
≜ (SP⟦Γ ⊢ 𝑒1 :R𝑎⟧𝑘<𝑛+1Θ𝑘

) ++ (SP⟦Γ ⊢ 𝑒2 :R𝑏⟧𝑘<𝑛+1Θ𝑘
)

SP⟦Γ ⊢ let 𝑥 = 𝑒1in 𝑒2 :R𝑏⟧𝑘<𝑛+1Θ𝑘
≜ SP⟦Γ, 𝑥 : R𝑎 ⊢ 𝑒2 :R𝑏⟧𝑘<𝑛+1Θ𝑘⊎{𝑥←hist }

where hist ≡ [SP⟦̂e⟧𝑘<𝑛+1Θ𝑘
;SP⟦̂e⟧𝑘−1<𝑛+1Θ𝑘−1

; ...;SP⟦̂e⟧0<𝑛+1Θ0
]

and ê ≡ Γ ⊢ 𝑒1 :R𝑎

SP⟦Γ ⊢ feed 𝑥 .𝑒 :R𝑎⟧𝑘<𝑛+1Θ𝑘
≜ SP⟦Γ, 𝑥 : R𝑎 ⊢ 𝑒 :R𝑎⟧𝑘<𝑛+1Θ𝑘⊎{𝑥←hist }

where hist ≡ [P⟦f̂b⟧𝑘−1<𝑛Θ𝑘−1
; ...;P⟦f̂b⟧0<𝑛Θ0

] with f̂b ≡ Γ ⊢ feed 𝑥 .𝑒 :R𝑎

Figure 5. W single-step semantics of expressions, with P : I{𝑛}

From Section 1.3, we know that a function 𝑓 : R→ R is
linear iff 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦). However, this notion is
too weak to be of direct use in our programming language
context as a) not all expressions are functions, and b) pro-
gram expressions are indeed open, so the property has to be
extended as to be meaningful under an environment Γ.

As is often the case in interactive theorem proving, finding
the right theorem and definition statements does amount
to the large majority of the work the proof engineer or re-
searcher has to do.
In our case, we will take advantage of the well-known

technique of “logical relations”: relations over values indexed
by program types, and closed over functional values in such
a way that functions must send related inputs to related
outputs.We first specify what linearitymeans for values ofW
types using the ternary, type-indexed relation rel_additive:

Fixpoint rel_additive k t {struct t}
: tyI k t → tyI k t→ tyI k t→ Prop :=
match t with

| tpair m ⇒ fun x1 x2 x3⇒ x1 = x2 − x3

| tfun m n ⇒ fun f1 f2 f3⇒
forall (x1 x2 x3 : k.+1.−tuple (tyI k m)),
x1 = x2 − x3 → f1 x1 = f2 x2 − f3 x3

end.

In the above code, we have two cases. For basic values, we just
require that the first element of the relation is the subtraction
of the third from the second. For functional values, we do
require that the functional values behave in a linear way.
Note that, in the first versions of this work, we were able to
get away with a unary relation, as one can substitute over
the equalities; however, we felt that this presentation is more
standard and allows us to define the upcoming fundamental
lemma in a way more accessible for readers familiar with
logical relations.

Note also that the use of the additive property 𝑓 (𝑥 − 𝑦) =
𝑓 (𝑥) − 𝑓 (𝑦) makes it more convenient to integrate our code
with the standard linear algebra libraries of Coq’s SSReflect
Mathematical Components library, as it captures both lin-
earity and preservation of negation.

39

FARM ’21, August 27, 2021, Virtual, Republic of Korea E.J. Gallego Arias, P. Jouvelot, S. Ribstein, and D. Desblancs

The fundamental lemma, rel_additive_fund, does gener-
alize the relation over values to a relation over open expres-
sions:
Lemma rel_additive_fund

Γ t (e : expr Γ t) n (I : I n) (HI : hlinP' I) :
forall k (hk : k < n.+1) (Θ1 Θ2 Θ3 : env k Γ) ,
env_additive Θ1 Θ2 Θ3 →
let: v1 := exprI I hk e Θ1 in

let: v2 := exprI I hk e Θ2 in

let: v3 := exprI I hk e Θ3 in

rel_additive v1 v2 v3.

env_additive states that Θ1 = Θ2 − Θ3, and the HI assump-
tion ensures that the interpretation I is, for the feedback case,
linear with respect to environments, which is a sub-case of
rel_additive, but specialized to non-functional types; this
is enough due to our current typing restrictions on the argu-
ments of feedbacks and functions.

As a corollary of the fundamental lemma, we obtain:
Corollary funD n k (p : k <= n) a b

(f : expr [::] (tfun a b)) :
let (f : k.+1.−tuple ' cV_a→ 'cV_b) := exprIn p f tt in

additive f.

which reads as “given an arbitrary time step 𝑛 and a well-
typed closed function 𝑓 , the interpretation of 𝑓 at 𝑘 is addi-
tive”.

Note that this process can be repeated for scaling, that is
to say 𝑓 (𝑐𝑥) = 𝑐 𝑓 (𝑥), this time obtaining:
Corollary funP n k (p : (k <= n)%nat) a b

(f : expr [::] (tfun a b)) : lmorphism (exprIn p f tt).

where lmorphism is the Coq definition of a “linear morphism”,
which implies both additivity and scalability.

3 Running Ahead: Imperative Semantics

Up to this point, we have used the formal semantics in Fig-
ure 5 to reason aboutW programs and their properties; while
this is nice, and it works reasonably well, we are still far from
something usable as a programming framework.
Indeed, the semantics of Section 2.3 recompute the full

time history of arguments at every function application node.
This is simple to understand mathematically, and the locality
(or referential transparency) of the definitions helps in formal
reasoning, but it is not going to work in actual uses, as this
argument re-computation is highly impractical and requires
an unbounded amount of memory.

In this section, we focus on the concrete case when access
to variables’ history is bounded. This way, we can allocate a
buffer at every application point — and feedback, of course —
that will store the argument’s past values up to the inferred
bound in the buffer to avoid recomputing.

We claim that this produces a reasonable execution model,
and will proceed to experimentally benchmark our programs
to show so.

𝜏 ::= · · · | 𝐼𝑛
𝑒, 𝑓 ::= 𝑥 𝑥 ∈ V

| · · ·
| 𝑒 [𝑒idx]
| 𝑓 [ptr↢ 𝑒] ptr ∈ Ptr
| [ptr↢ feed 𝑥 . 𝑒] ptr ∈ Ptr

Figure 6. UpdatedW syntax and types, with buffer alloca-
tion and array indexes

3.1 Language Extensions for Allocations and

Variables-as-Arrays

Before moving ahead with the imperative semantics, we
slightly tweak and extend the syntax from Figure 1 to provide
a more comfortable programming experience, at the cost of
adding non-linear constructions; in particular:
• variables now lose the subindex and denote arrays –
we also introduce a type of ordinals 𝐼𝑛 (integers less
than 𝑛), and a safe array-access operator 𝑥 [𝑖];
• feedback and application expressions now store a poin-
ter to a heap-allocated circular buffer, where past val-
ues for the history-tracking expressions are stored.

Figure 6 shows the new indexing operator 𝑒 [𝑒idx], with typ-
ing rule [] : R𝑛 → 𝐼𝑛 → R, and the extra pointer in both
application and feedback nodes. We writeWptr for this up-
dated version when required.

Bounded Access. The new syntax implements bounded
access by default, as the type 𝐼𝑛 is only inhabited by integers
{0, . . . , 𝑛 − 1}; however, on the raw machine we will present
soon, type information is erased and indeed an out-of-bounds
access will lead to undefined behavior. This is just a particular
design choice, but any method that provides, for a functional
expression 𝑒 , the bounds on access to their argument would
work for us.

The idea of using bounded access to improve our machine
can be understood by looking at Figure 7. There, we can see
how the bound allows us to avoid allocating a new memory
cell for the value of the argument in the 𝑛 + 1 step, and we
can instead use a standard circular buffer.

Note that this goes beyond memoization (which is anyhow
impractical for DSP), as memoization does avoid the multiple
computations of all the previous values for arguments of
functions, but allocation is still necessary for the new ones.

Allocation and Heaps. Once we have a bound for our
functional terms, we have to allocate a buffer in the heap
and update the pointer for each expression. Note that it is
crucial that buffers are not overlapping obviously, and ini-
tialized to zero, as is common in DSP (though we could pro-
vide pragmas for different initialization setups, usually from
some probability distribution, which is a common pattern
for physically-based sound processing).

40

TheW-calculus: A Synchronous Framework for the Verified Modelling of . . . FARM ’21, August 27, 2021, Virtual, Republic of Korea

⟦𝑓 𝑎⟧𝑛 = ⟦𝑓 ⟧𝑛 [:: ⟦𝑎⟧𝑛 ; ...; ⟦𝑎⟧𝑛−𝑑+1; ⟦𝑎⟧𝑛−𝑑 ; ...; ⟦𝑎⟧0]

⟦𝑓 𝑎⟧𝑛+1 = ⟦𝑓 ⟧𝑛+1 [:: ⟦𝑎⟧𝑛+1; ⟦𝑎⟧𝑛 ; ...; ⟦𝑎⟧𝑛−𝑑+1; ⟦𝑎⟧𝑛−𝑑 ; ...; ⟦𝑎⟧0] unbounded history access

⟦𝑓 𝑎⟧𝑛 = ⟦𝑓 ⟧𝑛 [:: ⟦𝑎⟧𝑛 ; ...; ⟦𝑎⟧𝑛−𝑑+1; ⟦𝑎⟧𝑛−𝑑]

⟦𝑓 𝑎⟧𝑛+1 = ⟦𝑓 ⟧𝑛+1 [:: ⟦𝑎⟧𝑛+1; ⟦𝑎⟧𝑛 ; ...; ⟦𝑎⟧𝑛−𝑑+1] bounded access, fixed-size circular buffer

Figure 7. History dynamics (⟦𝑒⟧𝑛 is, informally, the value of expression 𝑒 at time step 𝑛; [:: ...; ...] is a list)

An important remark to keep in mind regarding allocation
of history buffers is that the following code has to work fine.
Assume fir : R𝑛 → R𝑚 and 𝑥,𝑦 : R𝑛 , then

(fir 𝑥, fir 𝑦)
has to work properly, while sharing the implementation of
fir; the above expression will allocate two buffers. Other
languages do actually unfold fir and insert the buffers at
delay time; however this creates cache locality and code size
issues. Moreover, it makes it hard to remain in a call-by-
value setting. We tried some different approaches to this
problem, which took us quite a while, but have settled with
this solution for now.

3.2 An OCaml-Based Interpreter

After the introduction of buffers to store the history of func-
tion arguments, we can define an interpreter or compilation
scheme for Wptr that should be capable of real-time DSP.
Even if the history space and time consumption problem has
been solved by the use of buffers, our language still features
first-class functions, and thus in particular closures; thus the
compilation scheme is not trivial, and we must eliminate
or manage allocations introduced by 𝜆-expressions, e.g., in
(𝜆𝑥.𝑥0 + 𝑥1) 𝑒 .
We thus face the tension between the need for rapid pro-

totyping and experimentation, and the need for an optimiz-
ing compiler that can produce code competing with hand-
written DSP routines.

We have found a middle ground by taking advantage of
the fact that the only overhead in the imperative version of
the semantics is interpretation and closure allocation. We
can put to use three key components to write a toy Wptr

compiler producing performant, allocation-free code:
1. first, we define anOCaml interpreter forWptr (Figure 8)

that takes advantage of Generalized Algebraic Data
Types (GADTs) to representWptr closures as OCaml
closures – this step is critical, as we will see;

2. second, we instrument ourWptr interpreter usingMetaO-
Caml – this staged interpreter can take any Wptr pro-
gram as input and produce a specialized version of the
interpreter for the particular input program;

3. last, we use the optimizing FLambda OCaml compiler,
which is able to compile the code generated in the
previous steps, eliminating all closures, and produc-
ing pretty fast machine code, allocation-free in all our
examples.

We show the “denotational” and imperative interpreters in
Figure 8 side-by-side, to help the reader spot the differences.
The denotational version is a straight lifting of the interpre-
tation function SP⟦⟧ defined above in Coq to OCaml.

The most interesting case for the imperative interpreter is
the application case. As the reader can see, we first compute
the value for the argument at the current time, then we push
it to the buffer, passing the pointer to the interpretation of
the function, which is an OCaml function thanks to our use
of GADTs. The feedback node follows a similar scheme.
Once we have the interpreter, we proceed to stage it in a

standard way — as shown in Figure 9 — so we can produce
specialized code for eachWptr input program. The generated
code contains closures, but for our examples (see below), all
of themwill be eliminated by the OCaml optimizing compiler.

3.3 Experimental Evaluation

We perform an informal experimental evaluation of our com-
pilation scheme. In particular, we compare 3 different im-
plementations — imperative interpreter “basic”, staged inter-
preter “gen”, hand-made code “hm” — of 3 examples:
• fir, a simple finite-impulse response filter of 15th order;
• iir, a simple infinite impulse filter of 15th order;
• com, the composition of fir and iir.

Results can be seen in Table 1. The time column denotes time
per run of 10 samples. The allocation columns “mWd” and
“mjWd” refer to specifics of the OCaml’s garbage collector,
but we can interpret them as “minor” and “major” allocations,
with the latter being very expensive, and the former being a
lesser worry but still a cost in terms of CPU instructions.

The “basic” version provides a reasonable baseline. How-
ever we allocate a large amount of memory on each cycle

41

FARM ’21, August 27, 2021, Virtual, Republic of Korea E.J. Gallego Arias, P. Jouvelot, S. Ribstein, and D. Desblancs

let rec machine_n :

type a. int → a expr → env → a list =

fun step e env →
if step < 0 then []

else machine step e env :: machine_n (step-1) e env

and machine : type a . int → a expr → env → a =

fun step e env → match e with

| Var (idx, id) →
lookup env id idx

| Lam e →
fun hist → machine step e (hist :: env)

| App (ef, ea) →
let a_hist = machine_n step ea env in

machine step ef env a_hist

| Feed e →
let e_hist = machine_n (step-1) (Feed e) env in

machine step e (e_hist::env)

|...

let heap = ... (* pre-allocated *)

let rec imachine : expr → env → value =

fun e env → match e with

| Var (idx, id) →
let p = ptr_of id env in

lookup heap p idx

| Lam e →
fun ptr → imachine e (ptr :: env)

| App (p,ef,ea) →
let va = imachine ea env in

shift_one heap ptr va;

imachine ef env ptr

| Feed (ptr,e) →
let v = imachine e (ptr::env) in

shift_one heap ptr v;

v

|...

let rec repeat : int → (unit → 'a) → 'a = fun n c →
if n = 0 then c ()

else (c (); repeat (n-1) c)

let eval e env n = repeat n (fun () → imachine e env)

Figure 8. Denotational vs. imperative interpretations

Figure 9. Staged Interpreter, Selected Cases
let rec eval : type a. env → a expr → a code =

fun g e → match e with

| Cst r →
let module M = Lift_array(Lift_float) in M.lift r

| Var id →
.< Array.(unsafe_get .~(heap) .~(List.nth g id)) >.

| Idx (vec, id) →
.< let v = .~(eval g vec) in

let i = .~(eval g id) in

Array.(unsafe_get v i) >.

| Add (e1,e2) →
.< let v1 = .~(eval g e1) in

let v2 = .~(eval g e2) in

WArray.map2 (+.) v1 v2 >.

| Lam e →
.<fun p → .~(eval (.<p>.::g) e)>.

| App (p, f, e) →
.< let v = .~(eval (.<p>.::g) e) in

shift_one v Array.(unsafe_get .~(heap) p);

.~(eval g f) p >.

|...

for the composed example due to closures, plus the interpre-
tation overhead; at some point we even hit the major heap,
which is costly.

The generated code performs much better, surpassing the
hand-written code in one instance. Keeping into account

Table 1. Time (per sample) and memory allocation (per run)
for each test; percentages are time with respect to the slowest
case (com basic)

Name Time (ns) mWd (w) mjWd (w) Percentage
fir basic 4,982.48 789.01 0.11 47.54%
fir gen 188.42 21.00 1.80%
fir hm 85.21 2.00 0.81%
iir basic 4,765.38 701.01 45.47%
iir gen 184.08 43.00 1.76%
iir hm 212.46 2.00 2.03%
com basic 10,479.81 1,522.02 0.31 100.00%
com gen 394.78 83.00 3.77%
com hm 287.33 46.00 2.74%

that the generated code was not optimized in any other
way, we think the imperative execution model performs
according to our goals, and that it has been validated in
terms of potential real-time performance. Thus, writing a
more refined compilation back-end seems to be worth it.
Note that we wrote the hand-made code in OCaml, but

we inspected the generated assembly closely, and indeed it
seems to be competitive with C code. We did some more in-
formal comparison of tuned C code generated from Faust vs.
our hand-made setup, and while OCaml performs a bit worse
than gcc, it is still below a 2x-overhead in the worst case.
We believe our hand-made baseline to be a good reference
point for now.

42

TheW-calculus: A Synchronous Framework for the Verified Modelling of . . . FARM ’21, August 27, 2021, Virtual, Republic of Korea

To compile the code, we used OCaml’s Flambda com-
piler, version 4.07.1, with the -O3 - unbox-closures op-
tions. For MetaOCaml, we used the 4.07.1+BER version, and
the core-bench benchmarking framework generously open
sourced by Jane Street.

3.4 Equivalence of Semantics

An open question at this point is whether one can show that
the semantics of the denotational interpreter is equivalent
to the semantics of the imperative version with buffers. The
proof here becomes a bit more complex, and in this paper we
just present a sketch of the idea and leave the fully formalized
proof for future work.

The difficulties here are standard, and have been discussed
in the context of verified compilation of synchronous pro-
gramming languages [15]. Concretely, we may try to relate
both interpreters using a logical or simulation relation, but
in this case the types are not telling the whole story. For an
expression Γ ⊢ 𝑒 :𝜏 , in the denotational case, Γ-compatible
environments Θ will contain the full story for the binders,
while in the imperative case, all they contain is a pointer on
the buffer; so the buffer invariant cannot be easily stated.

There likely exist many possibilities to overcome this, but
we intend to follow an idea similar to the one in Velus [15]
and extend our definition of well-typed judgements to expose
a heap shape Δ, so that Δ | Γ ⊢ 𝑒 :𝜏 denotes a well-typed ex-
pression, and pointers in application nodes refer to a unique
location in the heap. This way we expect to be able to de-
fine a predicate relating heaps plus imperative environments
to denotational environments, and prove that the one-step
evaluation preserves this relation, thus making induction on
the number of steps work.

4 Related Work

Domain-Specific Languages for DSP. The work presen-
ted here lies at the intersection of several domains, our influ-
ences and related work are quite varied. We briefly survey
related work, classified in a non-mutually exclusive way.
W is directly inspired by the Faust programming lan-

guage [48], and originally arose as a method to study / pro-
vide Faust with a mechanically specified operational seman-
tics, including multi-rate [7, 33, 49]. Faust has a clear deno-
tational model, but the particular implementation strategy
is left open so its cost semantics will vary depending on the
chosen compilation trade-offs. Moreover, Faust point-free
presentation is harder to connect with standard program-
ming languages techniques such as logical relations, which
rely on a typical “functional calculus” presentation. Picking a
particular evaluation order in W allowed us to reason about
buffers / arrays, which is very convenient in DSP, so we
ended up adding them as a first-order primitive for program-
mers’ use. Another key goal of this work was to provide a

semantics in which to interpret (future) multi-rate programs
with a reasonable cost model (see Section 5 for more details).

A language that feels very similar in syntax toW is Arrp [37,
38], an array-based language. Arrp uses optimizing polyhe-
dral compilation to produce very efficient code, while at the
same time providing the programmer with more flexibility
thanW in terms of array manipulation.W exposes arrays,
but only as primitive data-types, so at the moment array
operations are compiled directly to the underlying array op-
erations in the semantics. We haven’t explored what kind of
optimizations would be possible in this front.

Feldspar [5] is a DSL embedded inHaskell that can produce
efficient code for DSP algorithms using a custom compilation
strategy. CSound and Supercollider are music-processing lan-
guages that include DSP capabilities, usually based on the
notion of UGens, custom C routines that process audio on
a callback basis. Max/MSP and PureData are graphical pro-
gramming languages allowing the definition of signal data-
flow processing diagrams that are then interpreted. Some
more recent languages aimed at music DSP are also Vult and
Soul. All these languages were, in one way or another, con-
sidered during the design of the W framework, in particular
when thinking about the requirements that the W calculus
had to fulfil in order to ultimately become a possible com-
pilation target for them, and thus deserve to be mentioned
here. We also refer the reader to the survey on [6], which
compares the different expressivities of music-oriented DSP
languages.

Synchronous Programming. There exists a long tradi-
tion of research studying systems for real- and constrained-
time programming, among which one of the most success-
ful is the Synchronous Paradigm, in which programs are as-
sumed to react instantaneously to changes of input, which
are driven by some specific temporal scale.
Arising from the study of Kahn Proccess Networks [34],

the field of synchronous programming has produced very
important theoretical and practical contributions. As a very
incomplete list of synchronous languages, we could men-
tion Lustre [22], Esterel [10, 11], Signal [9, 28], Lucid Syn-
chrone [21, 23], and Zelus [16, 17].

Particularly recent relevant work to us is the research on
time refinement [42], causality analysis [8], constructive se-
mantics [44], and the work of Adrien Guatto [30]. Indeed,
Guatto’s work is quite close in spirit to our proposal, as
he introduces a synchronous language with integer clocks,
while most of his metatheory is based on techniques devel-
oped in the functional programming community, such as
step indexing [3, 12, 46]. A linear-based type system ensures
that all well-typed programs are safe and can be compiled
to finite circuits.W can be considered a simple synchronous
language, with the main constraint that no clock information
is required at run time; moreoverW programs have a unique

43

FARM ’21, August 27, 2021, Virtual, Republic of Korea E.J. Gallego Arias, P. Jouvelot, S. Ribstein, and D. Desblancs

typing derivation and the interpretation of programs doesn’t
depend on the typing derivation tree.

Data-FlowProgramming. Data-flow Programming is par-
ticularly well suited to signal processing, and data-flow dia-
grams are commonly used to write and specify algorithms.
Data-flow systems are typically characterized by their sched-
uling power, from synchronous data-flow [39] to more com-
plex but less performant proposals that admit no static or
cyclic schedules. A few remarkable systems that we looked at
duringW ’s design phase are Ptolemy [20, 50], StreamIt [58],
and SDF3 [57].

Functional Reactive Programming. Arrows and Func-
tional Reactive Programming [25, 31, 32, 40, 41, 47] pro-
vide an elegant framework to express many interesting pro-
gramming patterns based on time. A more recent develop-
ment [36] extends FRP to provide a leak-free full formal
semantics; we have found a great deal of inspiration on this
effort. Co-effects type systems [19, 26] provide a type-based
method to quantify resource and buffering dependencies. A
very relevant work on completeness of stream fusion is [35].

Formal Verification of DSP and Cyber-Physical Sys-
tems. An early effort for the deductive verification of a
synchronous system is found in [13]. More recently, Cé-
dric Auger’s PhD thesis [4] made significant progress; it has
been recently put to work to deliver the first certified Lus-
tre compiler [14, 18], which ensures the correctness of the
compilation of Lustre programs with respect to a denota-
tional model. The VERIDRONE project [52] aims to verify
the control engine of a drone with respect to safety condi-
tions such as zoning. There exists a long line of work on the
verification of mathematical properties for DSP by Tahar et
al. [1, 2, 45, 53, 56], mainly using the Isabelle theorem prover.
Closest to our attempt to verify the imperative heap al-

location pass is the work on the Velus verified compiler, as
well as the techniques required in order to manage memory
local to nodes.

5 Future Work

Throughout the paper we have already hinted at possible
future work directions; in particular, we can distinguish 4
concrete lines of work that we are pursuing.

Multirate Processing. A key design goal of W was to
accommodate multirate processing from the start. While the
work presented here exclusively deals with the single-rate
case, we have already developed a simple version of periodic
regular clocks that allows to implement several multi-rate
primitives in a simple way. In this setup, stream types are
annotated with a rate parameter, so that R, representing a
stream of samples in our setup, becomes R@1. Additional

subtyping rules such as

Γ 𝑥 = R𝑎@𝑟

Γ ⊢ 𝑥 :R𝑎 [𝑟]
Γ 𝑥 = R𝑎@𝑟 𝑥 is 𝑘-bounded

Γ ⊢ 𝑥 :R𝑎 [𝑟𝑘]

implement conversion from rates to arrays (of type R𝑎 [𝑟]) so
they can be manipulated; the left side is the simple version,
whereas the right version does allow “flattening” of a multi-
rate stream that has been bounded up to 𝑘 steps into an
array. The introduction of stream rates now requires an
emit operation, which we write {𝑒1, . . . , 𝑒𝑛} for emitting 𝑛
elements at one concrete time step. In this discipline, we
can now write several code examples (we note [𝑒1, ..., 𝑒𝑛] an
array constant with values 𝑒𝑖):

up : R@1→ R@2
up = 𝜆𝑥 . {𝑥, 0}

down : R@2→ R@1
down = 𝜆𝑥. {𝑥 [0]}

pack : R@2→ R2@1
pack = 𝜆𝑥.{[𝑥 [0], 𝑥 [1]]}

unpack : R2@1→ R@2
unpack = 𝜆𝑥 .{𝑥 [0], 𝑥 [1]}

FFTw : R@16→ R[128]@1
FFTw = 𝜆𝑥 . {FFT 𝑥}

The first 4 examples perform straightforward rate conver-
sion, with the particularity that both pack and unpack are
semantically the identity function after type erasure, as the
underlying pointers are the same. A more interesting exam-
ple is the last one, windowed FFT. In this case, we assume a
primitive FFT : R[128] → R[128]; then, the subtyping rule
will infer a bound for the input stream 𝑘 = 112, so 𝑥 will
be given type R[128], with a buffer of that particular size,
which gets shifted by 16 samples at each time step. Many
other interesting examples are possible in this framework,
such as filters with different control and data rates. Note
that this discipline leads naturally to the introduction of two
function types: a regular functional type for primitives not
aware of streams (such as FFT above), and a stream processor
type, where the arguments must be streams with rates.

Front End and Type Inference. As the reader may have
noticed, the core calculus presented in this paper is not
enough to compile programs, as we still need to compute
access bounds on variables as to properly size the required
buffers in the compilation scheme. To fill that gap, we have
developed an extension of the type system to track variable
usage using co-effects (see for example [19]). The idea is that
every variable in the environment gets an annotation that
reflects how many of their past values were used. This infor-
mation is also carried over functional types, so we can then
know a bound on the history access of each stream proces-
sor by just looking at their type. Note that typing rules now
crucially rely on the particular evaluation strategy! In our
case, we believe our current call-by-value discipline provides
by far the better adapted scenario, but other approaches are

44

TheW-calculus: A Synchronous Framework for the Verified Modelling of . . . FARM ’21, August 27, 2021, Virtual, Republic of Korea

possible. The basic rules are now:
(𝑥 :𝑘 R𝑎) ∈ Γ
Γ ⊢ 𝑥 :R𝑎 [𝑘]

Γ, 𝑥 :𝑘 𝜏 ⊢ 𝑒 :𝜎
Γ ⊢ 𝜆𝑥 . 𝑒 :𝜏 →𝑘 𝜎

so, for example, the FFT example becomes:
FFTw : R@16→112 R[128]@1
FFTw = 𝜆𝑥 . {FFT 𝑥}

We have implemented a full front end for this system, named
“Wagner”, which includes a parser and a bidirectional type-
checker; the above approach seems to work fine in practice,
with bidirectional type propagation being a key point in
order to correctly compute bounds. We took many hints
regarding type information dataflow from the approach im-
plemented by the Mathematical Components library [29] in
their matrix implementation.

Formally Verified Imperative Semantics. Work is un-
derway to implement the strategy outlined in Section 3.4 as
a formally verified Coq proof. In particular, we have defined
the imperative machine inside Coq using a heap monad (a
state monad where the state is the global heap), defined a
typing relation for allocated programs that implies pointer
independence, and are in the process of coding down the
corresponding soundness relations. Additionally, we could
consider implementing a program logic in the style of [27].

More Principled Code Generation. Additionally, more
work in the back end is planned. The current solution using
MetaOCaml was quick to implement and provided good
results; however it is not practical as a daily driver for DSP
development, where the compiler is expected to target low-
level languages such as C or Rust. We thus plan to implement
program generation targeting a simple imperative C-like
format by specialization + defunctionalization [24, 51], which
should suffice to generate reusable code.

The above are the main items in our work plan. However
a few other more speculative possibilities do include:
a) higher-order streams are in general very difficult to im-

plement efficiently (see for example [30]) and likely not
very useful for our intended application. In the case ofW ,
adding a shift index to closures would suffice to translate
relative access to the environment, but would likely incur
non-acceptable run-time costs;

b) dynamic dataflow graphs, since, so far, our calculus has a
fixed-dataflow structure; it could be interesting to allow
some dynamism here, but the way to do it is not yet clear;

c) modules, modular compilation and ML-style interfaces
will prove quite useful in the construction of DSP systems
and libraries, as well as to better structure components
with a complex control and data input-output structure.

6 Conclusion

We have presented theW-calculus, a formal calculus for the
encoding of real-time digital signal processors, and provided

its mechanized denotational semantics and a mechanized
proof that every program written in the calculus is linear,
using logical relations.

Additionally, we have developed an efficient imperative in-
terpreter, and performed an experimental evaluation of some
selected examples using program specialization to validate
our approach.
We believe that the presented work constitutes a good

basis upon which to (1) keep studying formally verified se-
mantics and properties of the language and programs written
in it and (2) evolve towards a usable high-level DSP language
that can be used to quickly and easily define efficient pro-
cessing components.

Acknowledgments

This work has been supported by the ANR FEEVER project
(ANR-13-BS02-0008). We thank Yann Orlarey, Adrien Guatto,
and Timothy Bourke for interesting discussions and ideas.

References

[1] Behzad Akbarpour and Sofiène Tahar. 2004. A Methodology for the
Formal Verification of FFT Algorithms in HOL. In FMCAD 2004. https:

//doi.org/10.1007/978-3-540-30494-4_4

[2] Behzad Akbarpour and Sofiène Tahar. 2006. An approach for the
formal verification of DSP designs using Theorem proving. IEEE Trans.
on CAD of Integrated Circuits and Systems. https://doi.org/10.1109/

TCAD.2005.857314

[3] Andrew W. Appel and David A. McAllester. 2001. An indexed model
of recursive types for foundational proof-carrying code. ACM Trans.
Program. Lang. Syst.. https://doi.org/10.1145/504709.504712

[4] Cédric Auger. 2013. Compilation Certifiée de SCADE/LUSTRE. Thèse
de Doctorat. Université Paris-Sud. http://tel.archives-ouvertes.fr/tel-
00818169/.

[5] Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson,
David Engdal, and Anders Persson. 2011. The Design and Implemen-
tation of Feldspar. Springer Berlin Heidelberg, Berlin, Heidelberg,
121–136. https://doi.org/10.1007/978-3-642-24276-2_8

[6] Karim Barkati and Pierre Jouvelot. 2013. Synchronous programming
in audio processing: A lookup table oscillator case study. ACM Comput.
Surv.. https://doi.org/10.1145/2543581.2543591

[7] Karim Barkati, Haisheng Wang, and Pierre Jouvelot. 2014. Faustine: A
Vector Faust Interpreter Test Bed for Multimedia Signal Processing —
System Description. In FLOPS 2014.

[8] Albert Benveniste, Timothy Bourke, Benoît Caillaud, Bruno Pagano,
and Marc Pouzet. 2014. A type-based analysis of causality loops in
hybrid systemsmodelers. InHSCC’14. https://doi.org/10.1145/2562059.

2562125

[9] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. 1991.
Synchronous Programming with Events and Relations: the SIGNAL
Language and Its Semantics. Sci. Comput. Program.. https://doi.org/

10.1016/0167-6423(91)90001-E

[10] Gérard Berry. 2000. The foundations of Esterel. In Proof, Language,
and Interaction, Essays in Honour of Robin Milner, Gordon D. Plotkin,
Colin Stirling, and Mads Tofte (Eds.). The MIT Press, 425–454.

[11] Gérard Berry and Georges Gonthier. 1992. The Esterel Synchronous
Programming Language: Design, Semantics, Implementation. Sci.
Comput. Program. 19, 2 (1992), 87–152. https://doi.org/10.1016/0167-

6423(92)90005-V

[12] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and
Kristian Støvring. 2012. First steps in synthetic guarded domain theory:

45

https://doi.org/10.1007/978-3-540-30494-4_4
https://doi.org/10.1007/978-3-540-30494-4_4
https://doi.org/10.1109/TCAD.2005.857314
https://doi.org/10.1109/TCAD.2005.857314
https://doi.org/10.1145/504709.504712
http://tel.archives-ouvertes.fr/tel-00818169/
http://tel.archives-ouvertes.fr/tel-00818169/
https://doi.org/10.1007/978-3-642-24276-2_8
https://doi.org/10.1145/2543581.2543591
https://doi.org/10.1145/2562059.2562125
https://doi.org/10.1145/2562059.2562125
https://doi.org/10.1016/0167-6423(91)90001-E
https://doi.org/10.1016/0167-6423(91)90001-E
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V

FARM ’21, August 27, 2021, Virtual, Republic of Korea E.J. Gallego Arias, P. Jouvelot, S. Ribstein, and D. Desblancs

step-indexing in the topos of trees. Logical Methods in Computer Science
8, 4 (2012). https://doi.org/10.2168/LMCS-8(4:1)2012

[13] Sylvain Boulmé and Grégoire Hamon. 2001. Certifying Synchrony for
Free. In LPAR 2001. https://doi.org/10.1007/3-540-45653-8_34

[14] Timothy Bourke, Lélio Brun, Pierre-Evariste Dagand, Xavier Leroy,
Marc Pouzet, and Lionel Rieg. 2017. A Formally Verified Compiler for
Lustre. In PLDI 2017.

[15] Timothy Bourke, Lélio Brun, and Marc Pouzet. 2020. Mechanized se-
mantics and verified compilation for a dataflow synchronous language
with reset. In POPL 2020. https://doi.org/10.1145/3371112

[16] Timothy Bourke, Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and
Marc Pouzet. 2015. A Synchronous-Based Code Generator for Explicit
Hybrid Systems Languages. In CC 2015. https://doi.org/10.1007/978-

3-662-46663-6_4

[17] Timothy Bourke and Marc Pouzet. 2013. Zélus: a synchronous lan-
guage with ODEs. In HSCC 2013. https://doi.org/10.1145/2461328.

2461348

[18] Timothy Bourke, Pierre Évariste Dagand, Marc Pouzet, and Lionel Rieg.
2017. Verifying clock-directed modular code generation for Lustre. In
JFLA’17.

[19] Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic.
2014. A Core Quantitative Coeffect Calculus. In Programming Lan-
guages and Systems. https://doi.org/10.1007/978-3-642-54833-8_19

[20] Joseph T. Buck, Soonhoi Ha, Edward A. Lee, and David G. Messer-
schmitt. 1994. Ptolemy: A Framework for Simulating and Prototyping
Heterogenous Systems. Int. Journal in Computer Simulation.

[21] Paul Caspi, Grégoire Hamon, and Marc Pouzet. 2008. Synchronous
functional programming: The Lucid Synchrone experiment. Real-Time
Systems: Description and Verification Techniques: Theory and Tools..

[22] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. 1987.
Lustre: A Declarative Language for Programming Synchronous Sys-
tems. In POPL 1987. https://doi.org/10.1145/41625.41641

[23] Paul Caspi and Marc Pouzet. 1996. Synchronous Kahn Networks. In
ICFP ’96. https://doi.org/10.1145/232627.232651

[24] Olivier Danvy. 2008. Defunctionalized interpreters for programming
languages. In ICFP 2008. https://doi.org/10.1145/1411204.1411206

[25] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.
In ICFP ’97. https://doi.org/10.1145/258948.258973

[26] Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien
Breuvart, and Tarmo Uustalu. 2016. Combining effects and coeffects
via grading. In ICFP 2016. https://doi.org/10.1145/2951913.2951939

[27] Emilio Jesús Gallego Arias, Pierre Jouvelot, and Olivier Hermant. 2015.
A Taste of Sound Reasoning in Faust. In Proceedings of the 13th Linux
Audio Conference. https://github.com/ejgallego/mini-faust-coq

[28] Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic, and Jean-Pierre
Talpin. 2007. Polychronous design of embedded real-time applications.
ACM Trans. Softw. Eng. Methodol.. https://doi.org/10.1145/1217295.

1217298

[29] Georges Gonthier. 2011. Point-Free, Set-Free Concrete Linear Algebra.
In ITP 2011. https://doi.org/10.1007/978-3-642-22863-6_10

[30] Adrien Guatto. 2016. A Synchronous Functional Language with Integer
Clocks. Ph.D. Dissertation. École Normale Supérieure.

[31] John Hughes. 2000. Generalising monads to arrows. Sci. Comput.
Program.. https://doi.org/10.1016/S0167-6423(99)00023-4

[32] JohnHughes. 2004. Programmingwith Arrows. InAdvanced Functional
Programming, 5th International School, AFP 2004. https://doi.org/10.

1007/11546382_2

[33] Pierre Jouvelot and Yann Orlarey. 2011. Dependent vector types for
data structuring in multirate Faust. Computer Languages, Systems &
Structures. https://doi.org/10.1016/j.cl.2011.03.001

[34] Gilles Kahn. 1974. The Semantics of Simple Language for Parallel
Programming. In IFIP Congress.

[35] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. 2017. Stream Fusion, to Completeness. In POPL 2017. https:

//doi.org/10.1145/3009837.3009880

[36] Neelakantan R. Krishnaswami. 2013. Higher-order functional reactive
programming without spacetime leaks. In ICFP’13. https://doi.org/10.

1145/2500365.2500588

[37] Jakob Leben. 2016. Arrp: a functional language with multi-dimensional
signals and recurrence equations. In FARM@ICFP 2016. https://doi.

org/10.1145/2975980.2975983

[38] Jakob Leben and George Tzanetakis. 2019. Polyhedral Compilation
for Multi-dimensional Stream Processing. ACM Trans. Archit. Code
Optim. https://doi.org/10.1145/3330999

[39] Edward A. Lee and David G. Messerschmitt. 1987. Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing. IEEE
Trans. Computers. https://doi.org/10.1109/TC.1987.5009446

[40] Hai Liu, Eric Cheng, and Paul Hudak. 2009. Causal commutative
arrows and their optimization. In ICFP 2009. https://doi.org/10.1145/

1596550.1596559

[41] Hai Liu, Eric Cheng, and Paul Hudak. 2011. Causal commutative
arrows. J. Funct. Program.. https://doi.org/10.1017/S0956796811000153

[42] Louis Mandel, Cédric Pasteur, and Marc Pouzet. 2015. Time refinement
in a functional synchronous language. Sci. Comput. Program.. https:

//doi.org/10.1016/j.scico.2015.07.002

[43] Louis Mandel, Florence Plateau, and Marc Pouzet. 2010. Lucy-n: a
n-Synchronous Extension of Lustre. In MPC 2010. https://doi.org/10.

1007/978-3-642-13321-3_17

[44] Michael Mendler, Thomas R. Shiple, and Gérard Berry. Constructive
Boolean circuits and the exactness of timed ternary simulation. Formal
Methods in System Design. https://doi.org/10.1007/s10703-012-0144-6

[45] Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar (Eds.). 2008.
TPHOLs 2008.

[46] Hiroshi Nakano. 2000. A Modality for Recursion. In LICS 2000. https:

//doi.org/10.1109/LICS.2000.855774

[47] Henrik Nilsson, John Peterson, and Paul Hudak. 2003. Functional
Hybrid Modeling. In PADL 2003. https://doi.org/10.1007/3-540-36388-

2_25

[48] Yann Orlarey, Dominique Fober, and Stephane Letz. 2004. Syntactical
and semantical aspects of Faust. Soft Comput.. https://doi.org/10.1007/

s00500-004-0388-1

[49] Yann Orlarey and Pierre Jouvelot. 2016. Signal Rate Inference for
Multidimensional Faust. In IFL 2016. https://doi.org/10.1145/3064899.

3064902

[50] José Luis Pino, Soonhoi Ha, Edward A Lee, and Joseph T Buck. 1995.
Software synthesis for DSP using Ptolemy.

[51] John C. Reynolds. 1998. Definitional Interpreters for Higher-Order
Programming Languages. High. Order Symb. Comput.. https://doi.org/

10.1023/A:1010027404223

[52] Daniel Ricketts, Gregory Malecha, and Sorin Lerner. 2016. Modular
Deductive Verification of Sampled-Data Systems. In EMSOFT.

[53] Umair Siddique, Mohamed Yousri Mahmoud, and Sofiène Tahar. 2014.
On the Formalization of Z-Transform in HOL. In ITP 2014. https:

//doi.org/10.1007/978-3-319-08970-6_31

[54] Julius Orion Smith III. 2007. Introduction to Digital Filters: with Audio
Applications. W3K Publishing. https://ccrma.stanford.edu/~jos/filters/

[55] Julius Orion Smith III. 2007. Mathematics of the Discrete Fourier
Transform (DFT): with Audio Applications (2nd ed.). W3K Publish-
ing. https://ccrma.stanford.edu/~jos/mdft/

[56] Anis Souari, Amjad Gawanmeh, Sofiène Tahar, and Mohamed Lassaad
Ammari. Design and verification of a frequency domain equalizer.
Microelectronics Journal (2014). https://doi.org/10.1016/j.mejo.2013.10.

012

[57] Sander Stuijk, Marc Geilen, and Twan Basten. 2006. SDF3: SDF For
Free.. In ACSD.

[58] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002.
StreamIt: A Language for Streaming Applications. In CC 2002. https:

//doi.org/10.1007/3-540-45937-5_14

46

https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1007/3-540-45653-8_34
https://doi.org/10.1145/3371112
https://doi.org/10.1007/978-3-662-46663-6_4
https://doi.org/10.1007/978-3-662-46663-6_4
https://doi.org/10.1145/2461328.2461348
https://doi.org/10.1145/2461328.2461348
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/232627.232651
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/2951913.2951939
https://github.com/ejgallego/mini-faust-coq
https://doi.org/10.1145/1217295.1217298
https://doi.org/10.1145/1217295.1217298
https://doi.org/10.1007/978-3-642-22863-6_10
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1007/11546382_2
https://doi.org/10.1007/11546382_2
https://doi.org/10.1016/j.cl.2011.03.001
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1145/2975980.2975983
https://doi.org/10.1145/2975980.2975983
https://doi.org/10.1145/3330999
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1145/1596550.1596559
https://doi.org/10.1145/1596550.1596559
https://doi.org/10.1017/S0956796811000153
https://doi.org/10.1016/j.scico.2015.07.002
https://doi.org/10.1016/j.scico.2015.07.002
https://doi.org/10.1007/978-3-642-13321-3_17
https://doi.org/10.1007/978-3-642-13321-3_17
https://doi.org/10.1007/s10703-012-0144-6
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1007/3-540-36388-2_25
https://doi.org/10.1007/3-540-36388-2_25
https://doi.org/10.1007/s00500-004-0388-1
https://doi.org/10.1007/s00500-004-0388-1
https://doi.org/10.1145/3064899.3064902
https://doi.org/10.1145/3064899.3064902
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1007/978-3-319-08970-6_31
https://doi.org/10.1007/978-3-319-08970-6_31
https://ccrma.stanford.edu/~jos/filters/
https://ccrma.stanford.edu/~jos/mdft/
https://doi.org/10.1016/j.mejo.2013.10.012
https://doi.org/10.1016/j.mejo.2013.10.012
https://doi.org/10.1007/3-540-45937-5_14
https://doi.org/10.1007/3-540-45937-5_14

	Abstract
	1 Introduction
	1.1 Design Goals
	1.2 Key Contributions and Structure of the Paper
	1.3 Mathematical Preliminaries

	2 The W-calculus
	2.1 Syntax
	2.2 Examples
	2.3 Semantics
	2.4 Linearity

	3 Running Ahead: Imperative Semantics
	3.1 Language Extensions for Allocations and Variables-as-Arrays
	3.2 An OCaml-Based Interpreter
	3.3 Experimental Evaluation
	3.4 Equivalence of Semantics

	4 Related Work
	5 Future Work
	6 Conclusion
	Acknowledgments
	References

