2023 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW) | 979-8-3503-8160-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/SBAC-PADW60351.2023.00018

2023 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)

A Source-to-source NUMA Profiling Approach

Leticia S.F. Machado
Computer Science Department
UFSCar - Sao Carlos, SP, Brazil
suellenletici @gmail.com

Abstract—The design of HPC processors is driven by the
purpose of packaging an increasing number of CPU cores.
This trend in the multicore design faces the physical reality
of integrating circuits into a single die in addition to the
bottleneck of components sharing, thus the advent of Non-
Uniform Memory Access (NUMA) with its typical packaging.
Cutting-edge supercomputers are made up of such (manycore)
compute nodes. In any case, the main issue is scalability. With a
NUMA configuration, a memory access can be local (within the
same NUMA node) or remote (from a NUMA node to another).
The latter is the main concern w.r.t to efficiency because of the
associated overhead is much more important. Dealing with this
concern explicitly when designing a program is called NUMA-
aware implementation. With an existing code, the problem can be
addressed by starting with an appropriate profiling. This is the
focus of the present work, where we suggest a way to instrument
the native code in order to get the type (i.e. local or remote)
of each memory access and we provide a tool that supports
the profiling process. We then propose a metric that takes these
statistics about memory accesses and provides a value indicating
the potential associated overhead.

I. INTRODUCTION

This study was motivated by the investigation of High
Performance Computing (HPC) solutions for efficient geo-
physical exploration. Seismic imaging applications are con-
sidered major enabling technologies to improve the efficiency
of the Oil and Gas industry in the coming years [l]. For
example, the full-waveform inversion (FWI) and the reverse
time migration (RTM) are essential applications for the iden-
tification and placement of hydrocarbon reservoirs, and also
for the characterization of the subsurface material like poros-
ity, viscosity, acoustic velocity, localization, dimensions, and
others. Stencil patterns can be fine-grained for point-wise
computations like in image processing or coarse-grained for
macroscopic schemes like what can be found with simulation
codes in experimental physics [2]. Furthermore, FWI and RTM
workflows are known to be computationally heavy. Typically,
the execution of an FWI scenario can take several months on
a Petaflop/s cluster, with data collected within the range from
2 to 10 Hz. Moreover, the computational cost of FWI will
keep increasing significantly in the coming years because of
the availability of better quality data (from new acquisition
technologies), the need for higher resolution images (i.e.,
processing higher frequency data), and the need to shorten
the “time to first oil” and improve the industry efficiency.
Even though the processing power of modern processors is
increasing, their memory systems are increasingly complex. At

979-8-3503-8160-3/23/$31.00 ©2023 IEEE
DOI 10.1109/SBAC-PADW60351.2023.00018

Claude Tadonki
Centre de Recherche en Informatique (CRI)
Mines ParisTech - PSL, Fontainebleau, France
claude.tadonki @mines-paristech.fr

54

Hermes Senger
Computer Science Department
UFSCar - Sao Carlos, SP, Brazil
suellenletici @gmail.com

the level of a compute node, the typical parallelization model
is the shared-memory one since we are dealing multicore
processors, some of them having a NUMA configuration.

Non-Uniform Memory Access (NUMA) configuration
stands as the standard approach to build up large multicore
processors in a modular way. Modulary here includes the
multi-socket characteristic that allows to extend the number of
available cores associated to the same processor. Note that the
basic idea behind NUMA packaging was to alleviate the pres-
sure on the (unique) shared bus as can be seen with symmetric
shared memory multiprocessor (SMP). A NUMA processor is
like a shared memory cluster of multicore processors, each of
which having its “local” memory while having access to that of
the others (“remote” memory). Remote accesses are costly for
mainly two reasons: the non-linear path from the core to the
remote memory and a potential saturation of the interconnect
between the NUMA nodes. The latter is a typical consequence
of a NUMA-unaware scheduling, especially when more cores
belonging to distinct nodes are involved. This is why we
commonly see a clear stagnation of the speedup curve with
benchmarks on NUMA processors, thus the need of so-called
NUMA-aware designs where the aforementioned aspects are
taken into account at the level of memory allocation or at
the level of tasks management. An example of NUMA-aware
design is provided in the work by Tadonki on Lattice Quantum
ChromoDynamics (LQCD) [2] with an illustration of its impact
on the overall parallel efficiency. Many other examples are
available in the litterature [3], [4], [5], [6], [7]. In case NUMA-
awareness is to be applied in a given ordinary parallel code,
a relevant profiling is clearly needed in order to figure out the
memory access pattern according to the NUMA configuration.
This is the purpose of our work, where we propose a source-
to-source approach and its associated implementation as a
profiling tool.

Our idea is to build the NUMA memory access pattern by
recording for each access the triplet: (virtual) memory address,
NUMA node of its physical location, NUMA node of the
thread requester. The code is instrumented through a high-
level transformation where each array access is replaced by a
function that returns the expected value while provisioning the
aforementioned memory access trace. With this trace that is
provided at the end of the profiling execution, the programmer
can investigate how to reduce the number of remote accesses.
In this work, we have (i) designed a profiling methodology; (ii)
built a tool to perform the corresponding high-level transfor-

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 17,2023 at 16:14:42 UTC from |IEEE Xplore. Restrictions apply.

mation from the user source code; (iii) proposed a metric that
helps to measure the quality of the memory access pattern w.r.t
NUMA -awareness. Some NUMA profiling tools are available
in the literature like NUMAGtind [8] and NUMAPerf [8], but
they do not act at the source code level although considering
other runtime aspects.

The rest of the paper is organized as follows. The next
section provides the necessary background on NUMA archi-
tectures together with the frameworks we have used. Section
III fully describes our profiling methodology, followed by our
proposed metric for NUMA locality in Section IV. Illustrative
and experimental results are presented in Section V. Section
VI concludes the paper.

II. BACKGROUND
A. Non-Uniform Memory Access (NUMA) architectures

Considering shared memory parallelization, the case of
NUMA processors require special attention because of the
particular organization of the memory and the impact on
the overall performance. Figure 1 displays some NUMA
configurations, illustrating the non-conventional sharing of
the overall main memory. The NUMA configuration was

CPU architecture (Intel Sandy Bridge)

NUMA Node 1 NUMA Node 2

: =T i
: () - e 1
W E i

: gapf & :
H & d

- BER I

NUMA Node 3 NUMA Node 4

Fig. 1. Examples of NUMA configuration with four nodes

designed to alleviate the bottleneck scenario where all CPU
cores use the same unique bus to access the main shared
memory, thereby maintaining a high probability of good
scalability over many cores. Unfortunately, perfect scalability
can be obtained only if all memory accesses are local. Indeed,
remote accesses are more costly because of the additional
mechanism that is activated to convey the data in addition
to the contention on the affected QPI links (local accesses
might be carried on simultaneously on these NUMA nodes).
Skillful memory allocation and thread management for better
scalability on NUMA processors is a hot topic. Stefan et al. [9]
proposed a library for parallel programs on NUMA processors
based on array abstraction and memory allocation routines.
Their library allows automatic tuning of data placement and
accesses for better scalability. Several specific contributions
[10], [11], [12], [13], [14] investigate optimizing threads
and data placement in a NUMA system by combining data
locality and thread binding to reduce the occurrences of remote
accesses. Lin et al. [15] proposed an efficient deployment of
stencil computations on NUMA many-cores, targeting higher
performance and portability.

55

B. Flex: A lexical analyzer generator

To accomplish our objective of analyzing the memory ac-
cess patterns of a given input program, we need to instrument
its source code so as to produce the trace corresponding to
its memory access pattern. To perform this source-to-source
compilation task, we used Flex [16], a well-known lexical
analyzers (scanners or lexers) generator. To proceed with Flex,
the user defines a set of lexical patterns (fokens) and a set
of actions to be performed whenever a token is encountered
(so-called rules) during the parsing. All these specifications
are written into a text file (lex file) that will be processed by
Flex to produce the lexical analyzer in the form of a valid
C file (called lex.yy.c) containing a function (called yylex())
that corresponds to the active parser itself. The compilation
of this C source-code generated by Flex produces the user
source-to-source “‘compiler” [17] that acts on any input text
file according to rules specified at the design step. Figure 2
gives an overview of the steps when using Flex.

a.lex ({lexfile}
l {description of the scanner}

lex.yy.c {cfile}
{lexical analyzer and transformations/actions}
(yytex))

|

a.out ({binaryfile}
{source-to-source “compiler”}

Fig. 2. Flex working diagram

C. NUMA-related utilities: numactl and libnuma

As we have previously explained, our approach is to in-
strument the code so as to collect NUMA-related information
about memory accesses. To be able to get this information,
we need specific NUMA utilities that can provide them both
for running threads and memory addresses. We considered
numactl and libnuma.

numactl is a Linux utility that provides control over NUMA
policy w.r.t to processes (threads) and memory. Indeed, nu-
mactl runs processes with a specific NUMA scheduling or
memory placement policy. The policy is set for command
and inherited by all of its children. In addition, it can set a
persistent policy for shared memory segments or files. Since
numactl is aware of the processor topology and how the CPU
cores map to CPU sockets, it can also be used to get NUMA-
related hardware information.

The libnuma is a library that offers a simple programming
interface to the NUMA (Non-Uniform Memory Access) policy
supported by the Linux kernel. libnuma allows the program-
mer, within its program, to get information like the NUMA
node location of a given memory address as well as for a

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 17,2023 at 16:14:42 UTC from |IEEE Xplore. Restrictions apply.

given running thread and to dynamically perform specific
(memory/thread) binding actions. For our work, we are mainly
interested in getting NUMA-related information in order to
generate our profile report as we are going to describe.

D. Illustration of the NUMA impact

As previously explained, the impact of NUMA on efficiency
mainly comes from remote accesses and bus contention. This
impact is either an overhead of the overall execution time or
bad scalability across several NUMA nodes. In the following
example, we ran a single-threaded program (wave simulation
code) on a machine with 8 NUMA nodes, using numact!
to bind thread execution and memory allocation on a single
specific node for each. Table I displays the matrix of the
timings (the value at position ¢j corresponds to the scenario
where the program running on node ¢ and memory is allocated
on node j). We can observe that this matrix has the same
structure than the one related to the NUMA topology of the
processor (obtained with numactl --hardware).

TABLE I
OVERHEAD OF REMOTE MEMORY ACCESSES

‘ l node 0 l node 1 l node 2 l node 3 ‘ node 4 ‘ node 5 l node 6 l node 7 ‘
node 0 44.82 54.92 54.31 53.64 74.47 74.45 68.75 74.50
node 1 54.08 44.63 53.58 53.24 73.72 7345 74.53 68.64
node 2 54.29 53.94 44.97 5432 69.11 72.90 72.62 72.19
node 3 53.97 54.06 54.65 44.44 73.03 69.06 72.49 72.60
node 4 74.43 74.17 68.45 74.74 44.83 54.29 54.18 54.20
node 5 75.45 74.01 74.57 68.99 54.04 44.49 54.05 53.98
node 6 69.16 72.58 73.01 72.88 53.66 53.84 44.71 54.62
node 7 73.08 68.52 72.94 72.49 53.72 53.68 54.56 44.60

A more complex example that illustrates the impact of
NUMA effects on parallel scalability is taken from a work
by Tadonki [2], where he proposes a NUMA-aware parallel
implementation of Lattice Quantum ChromoDynamics simula-
tion. Figure 3 displays the results of a NUMA-unaware version
of the LQCD simulation code on a machine with 4 NUMA
nodes. We can see the poor speedup when using several nodes. '

#cores || #threads
1 2
2 4
4 8
8 16

(2 nodes) 16 32
(4 nodes) 32 64

i(s)
0.02552
0.01301
0.00679
0.00475
0.00476
0.00507

GFlops | Speedup
9.98 1
19.59 1.96
37.50 3.76
53.60 5.37

53.53 5.36 6
50.25 5.03

Fig. 3. Weak scalability of a NUMA-unaware parallel code

III. OUR PROFILING METHODOLOGY 13
A. Description of our profiling method

Our source code parser is primarily intended to help the "
programmer to profile his program with respect to memory 1
accesses from the NUMA configuration standpoint. Con-
sidering an array, namely A, the idea is to replace each

56

access A[f(I)] by g(cpu_numa_node, A, f(I)), where I is
the iteration index and ¢ is a function that returns A[f([)]
while extracting and recording profiling information consid-
ering that the access has been requested from NUMA node
cpu_numa_node. The generated profiling information will
be the triplet (f(I),cpu_numa_node, mem_numa_node),
where mem_numa_node is the NUMA node id of the mem-
ory address of A[f(I)]. We always profile for one array at
a time although our code transformation can simultaneously
consider several arrays.

With libnuma library,

o cpu_numa_node is obtained with the instruction
numa_node_of_cpu(sched_getcpul())
where sched_getcpu () returns the id of the exe-
cuting CPU-core and numa_node_of_cpu (cpu_id)
returns the NUMA node id of the CPU-core cpu_id.

o mem_numa_node is obtained with the instruction
get_mempolicy (&mem_numa_node, NULL,
addr,MPOL_F_NODE | MPOL_F_ADDR)
where addr is the memory address of A[f(I)].

Let us illustrate the transformation considering an array A.

The instruction below

X = 3 + 2%A[3%1i+3];

will be replaced by

X = 3 + 2xfunc (numa_node_of_cpu(
sched_getcpu()),A,3xi+7);

0,

At the end of the execution of the instrumented code,
our profiling measurements are written down into a text file
that we post-process in order to get a more compact form
with associated statistics. Listing 1 provides an example of
instruction with an array access and Listing 2 shows the
corresponding transformation. Listing 3 describes how we get
and save the profiling information.

A[B];

X =

Listing 1. Input example
x = func (numa_node_of_cpu (sched_getcpu()), A,B);
Listing 2. Output example

void find_memory_node_for_addr (voidx ptr) {

int numa_node = 0;
if (get_mempolicy (&numa_node, NULL, 0, ptr,
MPOL_F_NODE | MPOL_F_ADDR) < 0)

printf ("WARNING: get_mempolicy failed
tab[2%pos+l] = numa_node;

")

int func(int caller,int x[], int y){
tab[pos] = y;
tab_caller[2xpos] = caller;
find_memory_node_for_addr (x+y);
pos++;
if (pos == TAB_LENGTH) {
save () ;
pos = 0;
}
return x[yl;
}
Listing 3. Profiling fonctions

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 17,2023 at 16:14:42 UTC from |IEEE Xplore. Restrictions apply.

1

B. Illustration of our profiling

To test our methodology and the associated tool, we con-
sider the code for the simulation of seismic wave equation!,
focusing on NUMA locality. Our application kernel simulates
the propagation of acoustic waves using a finite differences
method with regular 3D grids. The wave equation uses second
order time discretization and a second order spatial discretiza-
tion, resulting in a 7-point stencil on a 3D domain. A more
detailed description of our application and the numerical
methods used is provided in [18]. Listing 4 is the code
of our simulation kernel and Listing 5 is the corresponding
instrumented version as generated by our tool following our
instrumentation approach.

for(size_t n = 0; n < iterations; n++) {
for(size_t i1 = STENCIL_RADIUS;
i < nz - STENCIL_RADIUS; i++) {

for(size_t j = STENCIL_RADIUS; Jj < nx -
STENCIL_RADIUS; j++) {

for(size_t k = STENCIL_RADIUS; k < ny -
STENCIL_RADIUS; k++) {

size_t current = (i * nx + J) * ny + k;
double value = coefficient[0] =
(prev_ulcurrent]/dzSquared +
prev_u[current]/dxSquared +
prev_u[current]/dySquared) ;
for(size_t ir=1; ir<=STENCIL_RADIUS;
value += coefficient[ir] =* (
((prev_ul[current + ir] +
prev_u[current-ir]) / dySquared) +
((prev_u[current + (ir * ny)] +
prev_u[current-(ir x ny)]) /dxSquared)+
((prev_u[current+ (irxnx*ny)] +
prev_ul[current- (ir*nx*ny)])/dzSquared)) ;
}
value x= dtSquared x vel_model[current] =
vel_model [current];
next_u[current] = 2.0 * prev_u[current] -
next_u[current] + value;

ir++4) {

Listing 4. Original version of our simulation kernel

for(size_t ir = 1; ir <= STENCIL_RADIUS; ir++) {
value += coefficient[ir] = (
((func (numa_node_of_cpu (sched_getcpu()), prev_u,
current+ir) +
func (numa_node_of_cpu(sched_getcpu()), prev_u,

)
current-ir)) / dySquared) +
((func (numa_node_of_cpu (sched_getcpu())
current+ (irxny)) +
func (numa_node_of_cpu (sched_getcpu()), prev_u,
current- (irny))) / dxSquared) +

, prev_u,

((func (numa_node_of_cpu (sched_getcpu()), prev_u,
current+ (irxnx*ny))+

func (numa_node_of_cpu(sched_getcpu()), prev_u,

current- (ir*nx*ny)))/ dzSquared));

}

value = dtSquared x vel_model [current]
current];

next_u[current] = 2.0 % func (numa_node_of_cpu (
sched_getcpu()), prev_u,current) - next_ul
current] + value;

* vel_model [

Listing 5. Instrumented version of our simulation kernel

Uhttps://github.com/HPCSys- Lab/wave-equation

After compiling and running the instrumented code, all
collected profiling records are written down into a text file
that contains one line of the form
offset cpu_node mem_node
for each access to the array of interest. The profiling report
could be as follows

12 0 1
18 0 0
80 O 1
80 1 1
92 1 1
98 1 0

So, we can see that

e prev_u[12] was accessed from node 0 while being on
node 1 (remote access)

e prev_u[92] was accessed from node 1 while being on
node 1 (local access)

e prev_u[80] was accessed from node O and also from
node 1 while being on node 1 (1 remote access and 1
local access)

From the basic form of the profiling report, we generate
different other outputs by: sorting the lines by the offset;
aggregating the accesses by the offset and adding the
number of accesses, which yields lines of the form

offset cpu_node mem_node, nb_accesses

The compact form of the profiling report looks like Table II.

TABLE 11
COMPACT PROFILING REPORT
Offset CPU node MEM node #Accesses
13 1 1 6
13 0 1 4
162 1 1 30
162 0 1 20
332 1 0 70
1714 1 0 6

Note that we handle the profiling information through a
global variable that is updated upon each access of the profile
array. A mutual exclusion is needed in order to avoid race
conditions due to several threads attempting an update at the
same time, some profiling lines might be lost (overwritten).

The ultimate form of our profiling report is obtained
from that of Table II by aggregating the lines by the pair
(cpu_node, mem_node). This gives a table where lines
are of the form
cpu_node mem_node, total_nb_accesses
Table 4 displays an illustrative example from our experimental
run.

Table III provides a quantitative overview of memory ac-
cesses from the NUMA standpoint. Its 2D matrix form is given
by Figure 4 where the values are percentages.

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 17,2023 at 16:14:42 UTC from |IEEE Xplore. Restrictions apply.

TABLE III
PROFILING REPORT MATRIX
CPU node ~ MEM node Quantity
0 0 0
0 1 0
1 0 39106
1 1 30894
0 1 2 3 4 5 6 7
0] 11.77 0 0 0] 073 0 0 0
1 0/ 10.27 0 0| o041 1.83 0 0
2 0 0] 741 0 0] 2.76[232 0
= 0 0 0| 10.54 0 0] 1.82| 0.14
4| 04| 174 0 0] 10.36 0 0 0
5] 0] 0.36] 0.08 0 0] 12.06 0 0
6 0 0] 0.24| 035 0 0] 11.91 0
7 0 0 0| 228 0 0 0] 10.22
Fig. 4. Matrix of remote accesses

It can be used to appreciate the NUMA-awareness of the
program under the guidance of a NUMA metric. We now
describe a basic one.

IV. A BASIC NUMA METRIC

Having a NUMA accounting in general is a helpful profiling
item that the programmer can use to figure out the quality of
memory accesses. However, for optimization purposes, having
a single-value score (metric) is a goo complement as it can
be considered as the objective function to be minimized. We
define a basic one.

Consider the matrix corresponding to the profiling report
like described in Figure 4, we denote R = (74;), 1 < 4,5, < N,
where NNV is the number of NUMA nodes. The value of 7;;
represents the number of memory accesses from NUMA node
7 to NUMA node ¢ (each of these requests comes from NUMA
node ¢). Consider the NUMA distance matrix (given by the
command numactl --hardware), we denote D = (d;;).
We define our NUMA locality metric as follows

< 1
=750 > ridij, (1)

1<ij<N

where T is the total number of memory accesses (1" = > 7;;)
and Q = > d;;. One could set the diagonal of D to 0 (i.e.
d;; = 0, 1 < i < N) in accordance with the consideration
that there is no overhead with local accesses from the NUMA
standpoint. In practice, these values are non-zero, are the same
on the whole diagonal, and are lower than any other value.
Thus, if these apply, then the aforementioned zeroing of the
diagonal could be done by removing that constant to each of
the entries of D (i.e. replace d;; by d;; — doo).

Very important points: For future works or how to con-
sider our approach (especially regarding the score), the two
following key points are crucial.

e Data locality.

In our approach, we count each memory access regardless
of cache line locality. In practice, if the memory access

pattern is (highly) regular, then each remote access will
lead to local accesses for data within the same cache line
(if done while that line is till in cache). Thus, counting
each access individually severely evaluate the impact of
NUMA effect. One way to do this from our fine grain
profiling report is, for instance, to consider the cache line
id and count for accesses at that granularity. This can be
done by assuming an aligned allocation and considering
both the length of the data type and that of the cache line.
Some tools like NumaPerf deals with this at the level of
memory pages.
o Bus contention.
It is common to stress NUMA penalty because of the
focus on remote accesses (they are indeed more costly
than local ones). However, remote access might alleviate
the contention on local memory buses and thereby im-
prove performance and efficiency. Note that this was one
of the motivation of the design of NUMA architectures.
This is probably the reason why interleaving memory
allocations statistically yields a good performance even in
the presence of a significant amount of remote accesses.
o Tracking all critical variables.

Our method allows to track a specific array. However,
a given program might have several arrays that have a
strong influence on the memory accesses efficiency. Thus,
a more accurate profiling would be track all important
arrays. This is a natural extension of our methodology.

V. EXPERIMENTS

We consider our wave simulation code (the main loop) with
four input parameters dim_X, dim_Y, dim_Z, nb_iterations.
We influence memory allocation with either membin (allocate
on a specific NUMA node), —localalloc (allocate on the
NUMA node where the thread is running), and —interleave=all
(allocate in a distributed way across NUMA nodes). Our
goal is just to have different memory allocations and check
the output of our profiling. We managed to have a balanced
binding of the threads to the NUMA nodes.

We first consider the scenario (128, 128, 20) on an AMD
EPYC 7402 processor (2 sockets with one NUMA node each,
24 cores per socket). Table IV summarizes our results on this
processor. We can see the expected correlation between the
execution time (7") and our metric (6).

TABLE IV
EXPERIMENTAL RESULTS ON A 2 NUMA NODES PROCESSOR

Ne scenario | #threads mem policy T [}

1 323 : 100 2 —localalloc 0.002145 | 0.010499
2 323100 2 —interleave=all | 0.002265 | 0.25000

3 643 : 100 2 —localalloc 0.008956 | 0.126012
4 643 : 100 2 —interleave=all | 0.009263 | 0.2500025
5 1283 : 20 16 —localalloc 0.014295 | 0.017853
6 1283 : 20 16 —interleave=all | 0.014714 | 0.253441

Now we consider another processor. An AMD EPYC 7601
32-Core Processor (2 sockets with 4 NUMA nodes each, 16
physical cores per NUMA nodes). The graph of the relative

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 17,2023 at 16:14:42 UTC from |IEEE Xplore. Restrictions apply.

distances between NUMA nodes is displayed in Figure 5 and
our experimental results in Table V. About the aforementioned
correlation between the execution time and our NUMA metric,
which also shows up in Table V, the idea is to check that and
increase (resp. decrease) in one applies to the other, thereby
giving the programmer a quantitative objective that will guide
his optimization efforts.

node distances:
node 1
10 16
16 10
16 16
16 16
28 28
28 28
22 28
28 22

2
16
16
10
16
22
28
28
28

3
16
16
16
10
28
22
28
28

4
28
28
22
28
10
16
16
16

5
28
28
28
22
16
10
16
16

6
22
28
28
28
16
16
10
16

7
28
22
28
28
16
16
16
10

NOUPhWNRES

Fig. 5. Matrix of the distances between NUMA-nodes

TABLE V
EXPERIMENTAL RESULTS ON A 8 NUMA NODES PROCESSOR

N° | scenario | #threads mem policy T)

1 323 :20 2 all local 0.000951 | O

2 323 :20 2 —localalloc 0.001286 | 0.072029
3 323:20 2 —interleave=all | 0.001344 | 0.168942
1 643 : 20 2 all local 0.011839 | 0

2 643 : 20 2 —localalloc 0.006324 | 0.014311
3 643 : 20 2 —interleave=all | 0.006534 | 0.015693

VI. CONCLUSION

We have proposed and implemented a profiling method
that allows the programmer to get a trace of the memory
accesses from the NUMA standpoint. Based on this profile
report together with the NUMA distance matrix, we have
built a metric that provides an indication about the quality
of the memory access pattern w.r.t the NUMA characteristic.
Like with any other kind of program optimization, having
relevant profiling information is important and can be used as
a key for a systematic approach. Indeed, using our profiling
method (through the associated tool we have implemented?),
the programmer gets an insight of the NUMA locality of his
implementation, which he can then try to optimize under the
guidance of our metric. This further step is left as future work
together with other goals like: extending our lexical analyzer
to multidimensional access pattern, tracking multiple variables
at once, refining the account of memory accesses considering
locality w.r.t cache memory, generating suggestions for better
memory allocation.

ACKNOWLEDGMENT

Thanks to FAPESP Sao Paulo Research Foundation
(FAPESP) through grants 2022/11070-9 and 2022/00434-0
whose part of it has covered the visit of Leticia Machado

Zhttps://github.com/HPCSys-Lab/NUMA-metric

59

at Mines Paris-PSL and thus initiated this work and the
underlying cooperation. H.S. also thanks FAPESP for their
support through grants 2019/26702-8 and 2023/00566-6.

REFERENCES
[1]

J. Virieux and S. Operto, “An overview of full-waveform inversion in
exploration geophysics,” Geophysics, vol. 74, no. 6, pp. WCC1-WCC26,
2009. [Online]. Available: http://library.seg.org/doi/10.1190/1.3238367
C. Tadonki, “Scalable numa-aware wilson-dirac on supercomputers,”
in 2017 International Conference on High Performance Computing
& Simulation, HPCS 2017, Genoa, Italy, July 17-21, 2017. IEEE,
2017, pp. 315-324. [Online]. Available: https://doi.org/10.1109/
HPCS.2017.56

O. Haggui, C. Tadonki, L. Lacassagne, F. Sayadi, and B. Ouni,
“Harris corner detection on a numa manycore,” Future Generation
Computer Systems, vol. 88, pp. 442-452, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X1732188X
B. Lepers, V. Quéma, and A. Fedorova, “Thread and memory placement
on {NUMA} systems: Asymmetry matters,” in 2015 USENIX annual
technical conference (USENIX ATC 15), 2015, pp. 277-289.

C. Tadonki, “High performance computing as a combination of machines
and methods and programming,” Ph.D. dissertation, Université Paris
Sud-Paris XTI, 2013.

Y. Li, I. Pandis, R. Mueller, V. Raman, and G. M. Lohman, “Numa-
aware algorithms: the case of data shuffling.” in CIDR, 2013.

R. Al-Omairy, G. Miranda, H. Ltaief, R. M. Badia, X. Martorell,
J. Labarta, and D. Keyes, “Dense matrix computations on numa archi-
tectures with distance-aware work stealing,” Supercomputing Frontiers
and Innovations, vol. 2, no. 1, pp. 49-72, 2015.

X. Liu and J. M. Mellor-Crummey, “A tool to analyze the performance
of multithreaded programs on numa architectures,” in ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming, 2014.
[Online]. Available: https://api.semanticscholar.org/CorpusID:4869589

S. Kaestle, R. Achermann, and T. Roscoe, “Shoal: smart allocation and
replication of memory for parallel programs,” in Proceedings USENIX
Annual Technical Conference, Santa Clara, USA, 2015, p. 810.

M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: A holistic approach to
memory placement on numa systems,” in ASPLOSI, Houston, Texas,
USA, 2013, p. 810.

B. Lepers, V. Quéma, and A. Fedorova, “Thread and memory placement
on numa systems: asymmetry matters,” in In Proceedings of the 2015
USENIX Conference on Usenix Annual Technical Conference (USENIX
ATC 15), Berkeley, CA, USA, 2015.

R. Lachaize, B. Lepers, and V. Quéma, “MemProf:A memory Profiler
for NUMA Multicore Systems,” in USENIX ATC 12, 2012.

A. Collins, T. Harris, M. Cole, and C. Fensch, “LIRA: Adaptive
Contention-Aware Thread Placement for Parallel Runtime Systems,” in
ROSS, 2015.

Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman, “LIRA: Adaptive
Contention-Aware Thread Placement for Parallel Runtime Systems,” in
http://www.pandis.net/resources/cidr13numashuffling.pdf, 2013.

P. Lin, Q. Yi, D. Quinlan, C. Liao, and Y. Yan, “Automatically Op-
timizing Stencil Computations on Many-core NUMA Architectures,”
in International Workshop on Languages and Compilers for Parallel
Computing, Rochester, NY, USA, 2016.

D. Brown, J. Levine, and T. Mason, Lex & yacc.
Inc.", 1992.

V. Paxson, W. Estes, and J. Millaway, “Lexical analysis with flex,”
University of California, p. 28, 2007.

J. Freire de Souza, J. Baptista Dias Moreira, K. J. Roberts, R. di Ramos
Alves Gaioso, E. Satoshi Gomi, E. C. Nelli Silva, and H. Senger,
“simwave — A Finite Difference Simulator for Acoustic Waves Propa-
gation,” arXiv e-prints, p. arXiv:2201.05278, Jan. 2022.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16] " O’Reilly Media,
(17]

[18]

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 17,2023 at 16:14:42 UTC from |IEEE Xplore. Restrictions apply.

