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Abstract
This report presents the current overall status of my PhD thesis work. My goal is to optimize the compiler of

the Faust programming language [16], a domain specific language dedicated to audio signal processing. In order
to achieve this objective, I have worked on a type inference algorithm, taking inspiration from the algorithm W of
Hindley-Milner [5] and on the algebraic reconstruction algorithm of Jouvelot and Gifford [9]. My ultimate goal is
to provide Faust with a formally proven static typing system, thus making it more reliable and efficient. The type
inference algorithm presented here is organized in two main parts: a classic type inference algorithm, coupled
with the generation of constraints, and a solver to determine if the resulting constraints system is decidable and
to provide a mapping yielding the type of the input expression.

Including an abstract interpretation [4] aspect to this type system is part of the current tracks of studies for
this algorithm. Moreover, an implementation in OCaml is currently being developped. This is a first prototype
that will then be rewritten in C++ in order to be inserted inside the actual Faust compiler, so that it may be made
available along with the official Faust release. Synchronicity is an additional area of study as well. In addition to
these, I provide a previsional planning for the remaining time to complete my PhD thesis. I also present the skills
acquired through doctoral courses, as well as my English language proficiency. Finally, a principal bibliography
summarizes the related work quoted throughout this document.

Keywords : abstract interpretation, constraint, dependent type, Faust, Hindley-Milner, signal processing, solver,
static typing, synchronous language, type checking, type inference, type system.
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1 Introduction
This report presents the current overall status of my PhD thesis work for this first year. My goal is to optimize

the compiler of the Faust programming language [16], a domain specific language dedicated to signal processing.
In order to achieve this objective, I have worked on a type inference algorithm, taking inspiration from the usual
algorithm W of Hindley-Milner [5] and on the algebraic reconstruction algorithm of Jouvelot and Gifford [9].
My ultimate goal is to provide Faust with a formally proven static typing system, thus making it more reliable
and efficient, as static typing can find type errors reliably at compile time and usually results in compiled code
that executes more quickly. Moreover, it can enable the compiler to produce optimized machine code. This
whole work is part of the ANR project FEEVER, which promotes the optimization and ubiquity of Faust and
the applications relying on it. This document presents the type inference algorithm I am currently designing for
Faust in order to optimize its compiler. The algorithm presented here is organized in two main parts: a classic
type inference algorithm, coupled with the generation of constraints, and a solver to determine if the resulting
constraints system is decidable and to provide a mapping of unification variables toward type values.

Here, we shall focus more in depth on the constraints generation part of the algorithm. It outputs a constrained
type, which is a pair composed of a type and a constraint, which may contain multiple predicates. A constrained
type can be considered as a member of the larger class of dependent types [25]. Due to the association of
a constraint to a type, this notion also has ties to refinement types [8] and liquid types [17]. However, our
approach is different from the one of these existing types because our Faust types contain intervals, which would
be considered as constraints in usual dependent types. Among already existing concepts, there are a few different
ones which have their own notion of constrained types, but these are not the ones we are interested in. Instead, we
introduce our own notion of constrained type as well, which relies on constraints based on a different specification.

The second part of the algorithm is a solver which determines if the resulting constraints system is decidable
and provides a mapping of unification variables toward type values. In order to design this solver, I am basing my
work on existing projects such as Z3 [15] from Microsoft. My objective is to design a lighter solver using only
theories that are required by the specification of my constraints system. Currently, I am working on a translation
of the instances of this system towards the smt-lib language [2] so that I may provide the output constraints of the
first part of my algorithm as input to Z3 and other existing solvers. This way, I may use this existing work as part
of a prototype, knowing that the final implementation of my algorithm will nonetheless have to be autonomous in
order to be integrated in the compiler of Faust.

Including an abstract interpretation [4] aspect to this type system is part of the current tracks of studies for
this algorithm. This would enable me to optimize the handling of the recursive loop case of the Faust syntax
during the execution of my type inference algorithm. My goal is to use a better approximation through abtract
interpretation, first basing myself on works like [23] and [21], which provide a first view on an abstract semantics
for type systems, with [23] focusing on the case of static type systems. I am currently studying three different
approaches. The first two approaches take place in the first part of the algorithm, inserting this construction either
in the typing rules themselves or outside them. The third approach is to insert an abstract interpretation threory
in the theories module of the solver.

Moreover, an implementation in OCaml, using the ground work laid by the Faustine interpreter [1], is cur-
rently being developped. This is a first prototype that will then be translated into C++ in order to be inserted
inside the actual Faust compiler, so that it may be made available along with the official Faust release. Based on
this type checking algorithm, and using the classes infrastructure that is introduced throughout this document, it
shall take a Faust expression as input and output its type if it runs successfully.

Considering all of the above, this PhD thesis deals with the following issues. It introduces a static typing
system for Faust thanks to type inference. The handling of undecidability and of intervals is taken care of by
constraints and abstract interpretation respectively. All in all, I work on providing a synchronous system combin-
ing type inference, constraints and abstract interpretation. Thus, my presentation is organized as follows. First,
I provide an overview of my PhD thesis work in Section 2, with Subsection 2.1 dedicated to the thesis summary
and its context, Subsection 2.2 being a reminder of the basic notions of Faust, Subsection 2.3 focusing on the most
interesting challenges provided by this thesis, and Subsection 2.4 giving more insight on the existing publications
related to my work.

The type checking algorithm of Faust is introduced in Section 3. Subsection 3.1 presents the types and
notations used in the algorithm, along with the specifications of predicates and constraints, and an introduction to
constrained types. These will serve as a work basis for both the theoretical design and implemention of the type
checking algorithm. After these introductory preparations, the complete algorithm is presented in Subsection 3.2.
Subsection 3.3 contains the conjectured theorems of soundness and completeness for the algorithm. Section
4 presents my current work and study perspectives. In addition to these, I also provide perspectives for other
approaches in Section 5. After this, a presentation of my doctoral courses and English language skills will be
detailed in Section 6. A previsional planning is then made available in Section 7. Finally, Section 8 concludes
and the main bibliography of my work is made available in Section 9.
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2 PhD thesis overview
2.1 Subject and context
2.1.1 “Formal analysis and implementation of the Faust programming language”

The Faust programming language (Functional Audio Stream), designed at GRAME, a national musical cre-
ation center located in Lyon, focuses on the definition of synchronous digital audio signal processes. The Faust
programming paradigm is strictly functional. This language, used all over the world, can be applied in various
domains, from advanced audio filter design to innovative contemporary music installations. A first formal anal-
ysis of the core of Faust has been developed at CRI, as part of the ANR Astrée project. This analysis has led to
the definition of the precise semantics of the language core instruction set and a first attempt at characterizing the
language key semantic properties (typing, synchronicity). The goal of this PhD research is to:

• extend the existing formal definitions of the language core to the whole language,

• extend and generalize the existing theorems regarding Faust mathematical properties,

• implement within the Faust compiler the analyses developed above in order to provide even more perfor-
mant implementations (sequential, parallel) of Faust programs.

2.1.2 FEEVER : “Faust Environment Everyware”

My PhD work takes place as part of the ANR project FEEVER. Started on October 2013, it is structured
around four partners: ARMINES (project lead), CIEREC, GRAME, and the IRISA center of INRIA. Nowadays,
music and more generally audio processing is a life-enhancing practice that impacts everyone everywhere in
evermore personalized manners. Yet, the Net has been slow to offer users and developers the kind of advanced
technologies that would make similar listening enrichment standard, seamless and easily customizable online.
FEEVER intends to make such a vision a reality. Yet, scientific and technical challenges abound, while the
technological solutions need to be:

• portable, to allow program-once, deploy-everywhere economic advantages;

• easily programmable, to narrow the gap between specifications and implementation;

• able to deal with multiple platforms, for seamless integration within the user’s listening environments;

• efficient both in terms of computing time, since audio processing is a highly compute-intensive activity,
and energy, if only to permit mobile applications;

• secure, since audio processing activity performed on the client side must not jeopardize the user system.

It seems the Faust programming ecosystem introduced at GRAME 10 years ago is the proper starting point
towards the global solution the audio world is waiting for. FEEVER intends to make this happen via these main
tasks:

• “Task 1 : Models”, which focuses on formal issues at the language level,

• “Task 2 : Compiler”, which intends to provide an industrial-strength, efficient, multi-rate, multi-platform,
portable, easily integrable Faust compiler,

• “Task 3 : Ubiquity”, which puts FEEVER on the global scene, looking at ways to make Faust-enabled
solutions available everywhere, be it as a Web service or integrated within a smartphone web browser.

• “Task 4 : Education”, which strives to make FEEVER technologies even more relevant by looking at the
new usages they open up for audio processing and, more generally, digital signal processing teaching.

2.2 Presentation of Faust
2.2.1 Overview and syntax

A Faust program describes a signal processor, which is a function that gets input signals and produces output
signals. These signals are themselves functions of time to values. A distinctive characteristic of Faust is to be fully
compiled. The Faust compiler translates digital signal processing specifications into C++ code. The generated
code is self-contained and doesn’t depend on any library or runtime.

The syntax for the core of Faust is the following, where e is a Faust expression and i is an identifier:

e ::= i | e1 : e2 | e1, e2 | e1 <: e2 | e1 :> e2 | e1 ∼ e2
Case e1 : e2 corresponds to two connected expressions while case e1, e2 corresponds to two parallel expres-

sions. Case e1 <: e2 stands for the split of the outputs of a Faust expression to the more numerous inputs of
another Faust expression. Case e1 :> e2 is the merging of the outputs of a Faust expression into the fewer inputs
of another Faust expression. Finally, case e1 ∼ e2 corresponds to a loop between two Faust expressions. All these
expressions correspond to the following blocks diagram elements, where A and B stand for Faust expressions.
These figures are provided by [7].
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Next is an example of Faust program. The code and the corresponding block diagram are presented below.
These figures are provided by [7].
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2.2.2 Static semantics

The type of a Faust expression is a pair composed of a base type and an interval. The interval indicates the
possible range of an instance of this type. For example, 1 has type (int,[0, 1]) in Faust. However, Faust expressions
may have several possible type assignations. Here, the Faust expression 1 may also have type (int,[−2, 2]),
(float,[1, 1]) or even (float,[−∞,+∞]).

The static semantics of Faust stands as follows. It provides the types of the expressions of the syntax of Faust,
as well as the conditions for these expressions to exist. The following figures are provided by [11].

The rule for identifiers instantiates type variables with nondescript types. The sequence rule makes sure the
connecting types match. The parallel rule simply appends the types of the expressions.

The splitting rule makes sure the connections between the two expressions are complete and describes how
the signals are dispatched.

The merging rule relies on the same principle.

The loop rule handles the recursive connections and widens the interval of the output type to infinity. The
final rule stands for subtyping.

2.3 Stakes and challenges
2.3.1 Interest and stakes for Faust

My PhD work has an impact on Faust, as it strives to optimize its compiler. The development of Faust is of
noticeable interest since it is used in various domains all over the world. Introducing a static typing promotes
safety for Faust. It delivers approximations of the cases of undecidability during type checking. Moreover, my
system shall handle intervals in a more precise fashion than is currently done with the current approximation to
infinity during the unfolding of the loop cases.

A most important track of work is the extension of Faust to its multirate version, which can handle signals
with different frequencies, as well as vector structures. It does not exist at all within the official Faust compiler
for now. Thus, integrating this extension would be a leap forward for Faust.

In addition to introducing this static typing system and the multirate version of Faust, another point of in-
terest is to prove properties of Faust programs that are currently conjectured. Handling the macro-expansion
phenomenon of the implementation of the multirate version of Faust is also a stake that is worthy of notice. The
multirate version of Faust handles sets of signals that may have different frequencies.

2.3.2 General scientific contributions

Currently, my main contribution is the design of a type inference system, relying on a type checking algorithm.
As part of this algorithm, abstract interpretation shall be used in the handling of intervalls, which are currently
simplified to infinity by the widening function. In the end, my goal is to provide not only a synchronous system
combining type inference, constraints and abstract interpretation, but also an extension to multirate as well as a
new type system for an unusual language.
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2.4 Related work
2.4.1 Main references with links to type systems

The first set of references is related to the Faust programming language and encompasses very useful infor-
mation about the current status of Faust. Mainly, it presents the base notions of Faust, along with its semantics
and its multirate extension.

• Presentation of Faust : Yann Orlarey, Dominique Fober, Stephane Letz [16].

• Multirate version of Faust : Pierre Jouvelot, Yann Orlarey [11] [12].

• Faustine, a Faust interpreter and prototype for multirate Faust : Karim Barkati, Haisheng Wang, Pierre
Jouvelot [1].

The second set of references deals with multiple general aspects of type systems, especially on type inference,
dependent types and constraints. Dependent types are types containing information about the value of their
respective instances.

• Type inference and Hindley-Milner algorithm : Luis Damas, Robin Milner [5].

• Dependent types : Hongwei Xi [25].

– Refinment types : Andrew D. Gordon, Cédric Fournet [8].
– Liquid types : Patrick M. Rondon, Ming Kawaguchi, Ranjit Jhala [17].

• Constraints : Olivier Tardieu, Nathaniel Nystrom, Igor Peshansky, Vijay Saraswat [20], Kenneth L. McMil-
lan, Andrey Rybalchenko [14].

Solvers have also been a strong focus point for my PhD work, since they are at the heart of the second part of
my algorithm. I mainly studied the architectures of several existing solvers and the format of their inputs. They
rely on the notion of satisfiability modulo theories (SMT), in addition to the usual notion of satisfiability.

• Z3 : Leonardo de Moura, Nikolaj Bjorner [15].

• Gecode : Christian Schulte, Mikael Lagerkvist, Guido Tack. [18],

• veriT : Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, Pascal Fontaine.[3],

• Redlog : Andreas Dolzmann, Thomas Sturm. [6],

• smt-lib language : Clark Barrett, Aaron Stump, Cesare Tinelli. [2].

Abstract interpretation is going to be an even stronger point of focus as my work on the approximation of
intervals goes on. Right now, I have studied its most usual aspects, with a focus on abstract semantics for static
type systems.

• Original presentation of abstract interpretation: Patrick Cousot, Radhia Cousot [4].

• Type and effect system by abstract interpretation : Jérôme Vouillon, Pierre Jouvelot [23].

• Refinments of abstract types : Niki Vazou, Patrick M. Rondon, Ranjit Jhala [21].

2.4.2 References on synchronicity

In parallel to my work on type systems, I strive to pinpoint the aspects of the synchronous world that may
help enhance the functionalities of Faust. I have been able to isolate several promising leads, which may have
a positive impact on my thesis in the long run. Up to now, my main area of study on synchronicity has been
polychronicity and the use of multiple clocks.

• Polychrony : Paul Le Guernic, Jean-Pierre Talpin, Jean-Christophe Le Lann [13].

• Use of the Polychrony framework : Bin Xue, Sandeep K. Shukla. [26]

Another area of study has been sequential constructivity, including its ability to assign multiple values to a
variable during the same time unit, which may prove useful when dealing with the multirate version of Faust:
Jean-Pierre Talpin, Jens Brandt, Mike Gemünde, Klaus Schneider, Sandeep Shukla [19].

“End-to-end latency” has also been studied, especially because it provides constraints on synchronous sys-
tems : Rémy Wyss, Frédéric Boniol, Claire Pagetti, Julien Forget [24].

Finally, I have also studied synchronous concurrency: Reinhard von Hanxleden, Michael Mendler, Joaquin
Aguado, Bjorn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien [22].
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3 Type checking algorithm for the Faust programming language
3.1 Types and specifications
3.1.1 Types and notations

These are the definitions and notations of the types of the mathematical objects that are handled by the algo-
rithm, whose name is type_checking. Letters in italics a represent an instance of a type. Letters in upper case
A represent the set of all instances of a type. Greek letters α represent placeholders and buffers. Types whose
naming conventions are not introduced here are not directly used in the parts of the algorithm presented in this
document. Instead, they intervene in lower level functions.

boolean operator : b : instance of boolean operator. B : the set of boolean operators.

constraint : Pair containing a set of predicates and a set of identifiers. c : instance of constraint. C : the set
of constraints.

constrained type : Pair containing a type and a constraint. This is the output of the first part of the algorithm.
k : instance of constrained type. K : the set of constrained types.

environment : Mapping of variables on type scheme values, which is an input of the algorithm and is not
modified during the execution of the algorithm. r : instance of environment. R : the set of environments.

expression : Faust expression, which is an input of the algorithm. The type of a Faust expression corresponds
to the pair containning the type of its input beam and the type of its output beam. The operations on expression
types are the same as the operations on expressions. e : instance of expression. E : the set of expressions.

identifier : Variable name, which enables me to avoid duplicates. Examples of identifiers are instance names
and symbols representing operators. A particular case of identifier is the case of unification variables, that are
implementing variables on type schemes. i : instance of identifier. I: the set of identifiers.

mapping : Mapping of identifiers to type values. m : instance of mapping. M : the set of mappings.

numerical operator : o : instance of numerical operator. O : the set of numerical operators.

predicate : Comparison between basic types or between interval boundaries. p : instance of predicate. P :
the set of predicates.

signal : Member of a beam; its type is a Faust type, noted type for our algorithm.

type : Faust type. t : instance of type. T : the set of types.

type of beam : Type of a list of signals. These lists of signals are used as input and as output for a whole
Faust expression as well as for the blocks it contains. z : instance of a type of beam. Z : the set of types of beams.

type scheme : Type in which the type variables have not yet been instantiated with unification variables or
type values. In my design, a type scheme is represented as a pair whose first element is a type and whose second
element is a list of identifiers, which stand for the type scheme variables.

3.1.2 Predicate specification

A predicate is a boolean-valued function f : x −→ true, false, called the predicate on x. In our case, a pred-
icate takes as argument a comparison x between basic types or between interval boundaries. Thus, it represents
comparisons between types and also between numerical values, be they integers or floats.

Predicates can be regrouped in sets of predicates, which are conjunctions of predicates. Instead of using mul-
tiple constraints with only one predicate, I use a single constraint with multiple predicates. As the notion of set
of predicates is conceptually equivalent to a predicate formed by conjunction of other predicates, I shall often use
both of these designations for fluidity of speech.

Given an environment r, a predicate (or a set of predicates) can be satisfiable, unsatisfiable, or its satisfiability
cannot be determined. For example, with an empty environment, x ≤ 10 is satisfiable because it evaluates to true
for x = 9. Also, a set containing two contradictory predicates is unsatisfiable.
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Predicates are implemented according to the following syntax.

p ∈ P ::= true | e b e

e ∈ E ::= i | e o e

o ∈ O ::= + | ×

b ∈ B ::= = | < | >

3.1.3 Constraint specification

A constraint is a pair containing a set of predicates and a set of identifiers. As in the case of predicates, the
notion of set of constraints is close to a constraint formed by union of other constraints. So I shall often use both
of these designations for fluidity of speech. Given an environment n, a constraint can be satisfiable, unsatisfiable,
or its satisfiability cannot be determined. The satisfiability of a constraint is equivalent to the satisfiability of its
set of predicates. If the satisfiability of the constraint cannot be determined, the type checking algorithm may not
necessarily stop.

I only consider as constraint material the predicates that cannot be evaluated immediately and that actually
provide information leading to the mapping of unification variables toward type values.

Here, I present the operations specifically designed for these constraints.

Let c , c′ ∈ C
Let ρ ∈ P(P) and ι ∈ P(I) so that c = (ρ,ι)
Let ρ′ ∈ P(P) and ι′ ∈ P(I) so that c′ = (ρ′,ι′)

newC : constructor

newC = (∅,∅)

c#1 : set of predicates of constraint c

c#1 = ρ

c#2 : set of identifiers of constraint c

c#2 = ι

c ∪ c′ : union of 2 constraints

c ∪ c′ = (ρ ∪ ρ′, ι ∪ ι′)

Using the notations from above, we can also write this definition as :

c ∪ c′ = ( c#1 ∪ c′#1 , c#2 ∪ c′#2 )

The use of ∪ ensures that there is no syntactically duplicate predicate in the resulting set of predicates.

Using all of the above, I can now define the syntax of the constraints by adding these statements to the syntax
of predicates:

C = P(P) × P(I)

c ∈ C ::= c ∪ c | (ρ,ι)

ρ ::= p ∪ p

ι ::= i | i ∪ ι

ρ and ι are placeholders used for the writing purposes of this syntax.
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3.1.4 Constrained type specification

An instance of a constrained type is a pair whose first element is a type and whose second element is a con-
straint. The first part of our algorithm, i.e. the usual type inference part, returns a constrained type as output. This
enables me to express the fact that I have a type t still containing unification variables, which will be mapped
to actual type values by the solver part of our algorithm. The solver does not need t as an input, but only the
constraint c. t will only be used again after the execution of the solver, so that the the mapping returned by the
solver may be applied to it and thus yield the type that will be the output of the whole algorithm.

Thus, a constrained type has the following designation:

Let k ∈ K = T × C

k = (t,c) where t ∈ T and c ∈ C

Due to the association of a constraint to a type, this notion has ties to dependent types [25], refinment types [8]
and liquid types [17]. However, my approach is different from the one of these existing types because Faust types
contain intervals, which would be considered as constraints in usual dependent types. Among already existing
concepts, there are a few different ones which have their own separate notions of constrained types, but these are
not the ones I am interested in because they use a different specification for their constraints. From the point of
view of usual dependent types, I am using two different levels of constraints: the interval and the constraint itself.
In my case, I do not directly classify the interval as a constraint but instead extract and use the related data during
the computation of constraints.

3.2 Type checking
3.2.1 Main algorithm

The principle of this type inference algorithm is based on [5] and [9]. The notations that are used here are the
ones presented in section 3.1. The syntax of Faust and the rules leading to the constraints and structural conditions
presented below can be found in [11] and [12]. The name of this algorithm is type_checking. It is organized in two
main parts: constrained_type and solve. Thus, type_checking is the function with the highest level of abstraction
in the algorithm. It takes as input an environment, a Faust expression and a preliminary constraint, which enables
me to provide predefined conditions.

First, in constrained_type, the input Faust expression is explored like in the usual type inference algorithm
[5], while constraints are stored at the same time. These constraints are due to the connection of all the blocks of
the expression, following the rules described in [11] and [12]. At the end of this first part, we have obtained a type
which still contains unification variables that need to be assigned to type values, along with a set of constraints.
In our design concept, this set is represented as one constraint which contains a set with all the corresponding
predicates. What we now need is to find a mapping of the unification variables to type values. Therefore, we call
the second part of our program (a.k.a. solve), which determines whether our constraint system is satisfiable or
not. If so, it will return a mapping of the unification variables to type values. Once this is done, the algorithm
returns the type of the Faust expression, which is the application of this mapping to the type which we got as an
output of constrained_type. If the constraint system is not satisfiable, then the algorithm returns fail.

All of this yields the following outline, which corresponds to the highest level of abstraction of the algorithm.

type_checking : R −→ E −→ C −→ T + fail

type_checking r e c =
let (t, c′) = constrained_type (r,c) e
let m = solve c′

m t

3.2.2 Constrained type computation

As in [5] and [9] , I perform the basis of a type inference algorithm by reasoning by induction on the input
Faust expression e. In each case, we will generate the corresponding constrained type, thus yielding a type con-
taining unification variables to be mapped by the solver part of the main algorihm along with the constraint that
will be fed to this solver in order to determine the resulting mapping. These constraints will allow us to keep track
of the unification variables to map, and to check whether the type equality conditions that could not be evaluated
immediately are satisfiable or not.
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• In case e = i , I instantiate the type scheme variables with unification variables. In order to do so, we
generate as many new unification variables as there are uninstantied type scheme variables.
Then we substitute these new unification variables to the type scheme variables in the type t. Here, the
type scheme variables are represented as the list of identifiers l, while the resulting unification variables are
represented as the list of identifiers l′.
The related constraint is the union of the input constraint and of the constraint containing the empty predi-
cate and the list of identifiers of the new unification variables. Thus, these new unification variables can be
tracked in the resulting type t′ while applying the solver part of the main algorithm.
The output of this case is the constrained type consisting of the resulting type t′ and the resulting constraint.
The structural condition that is checked immediately is that i be in the definition domain of the environment
n, which is an input of constrained_type, as well as an input of the main algorithm.
This case corresponds to the lowest level of the expression, like a leaf in a tree.

• In case e = e1 : e2 , I first recursively call constrained_type on e1 and e2 in order to get the constrained
types of e1 and e2 and then call the utilitary function subtype which will generate the additional subtyping
constraints and dispatch the input and output types of the resulting expression.
The structural condition that is checked immediately is that the number of outputs of e1 be equal to the
number of inputs of e2.
The additional subtyping constraint may be defined as follows, where (z1,z′1) is the type of e1 and (z2,z′2)
is the type of e2:
Let c ∈ C, ρ ∈ P(P) and ι ∈ P(I) so that c = (ρ,ι)
Then ρ =

⋃
j∈[1,|z2|]

(t′1,(l
′
1,u

′
1))=z′1(j)

(t2,(l2,u2))=z2(j)

{ t′1 = t2 } ∪ { l2 < l′1 } ∪ { u′1 < u2 }

Here, t stands for a base type, l for a lower bound on an interval and u for an upper bound on an interval.
The generation of this constraint is handled by the typing_predicate function, which may be used with ei-
ther the ⊂ operator for subtyping or the = operator for type equality.
This case corresponds to the most common situation we will encounter in our input Faust expression, as
other cases may be translated as an equivalent e1 : e2 case.

• In case e = e1 , e2 , the beams of e1 and the beams of e2 run in parallel so this case is equivalent to append-
ing the input beams of e1 to the input beams of e2 and the output beams of e1 to the output beams of e2.
We first recursively call constrained_type on e1 and e2 in order to get the constrained types of e1 and e2 .
There are no structural conditions to check, as the beams of e1 and e2 do not interact with one another.
Then, we simply concatenate the constraints, the input beams and the output beams of the two expressions.
This case is the easiest to handle, as it does not generate additional predicates to store in our global con-
straint.

• In case e = e1 <: e2 , each output signal of e1 is transferred to multiple inputs of e2. We first recursively
call constrained_type on e1 and e2 in order to get the constrained types of e1 and e2.
Structural constraints are checked immediately after that. They ensure that the two beams z′1 and z2, which
connect, are not null and that the length of z2 is a multiple of the length of z′1, thus making sure that each
signal from z2 will receive an input from z′1.
By using the function split_to_seq, we then move from a split case to an equivalent e1 : e2 case, which will
be directly handled by a new call to constrained_type. This way, we have indeed the e1 : e2 case serve as a
translation target in the more complex cases of this algorithm.

• In case e = e1 :> e2 , each input signal of e2 receives a sum of outputs from e1. We first recursively call
constrained_type on e1 and e2 in order to get the constrained types of e1 and e2. Structural constraints are
checked immediately after that.
They ensure that the two beams z′1 and z2, which connect, are not null and that the length of z′1 is a multiple
of the length of z2, thus making sure that each signal from z′1 will have a destination in z2.
By using the sum function, we then apply the function subtype as we did during the e1 : e2 case. In the
end, we have indeed summed the output signals of e1 into the corresponding inputs of e2.

• In case e = e1 ∼ e2 , |z2| signals of beam z′1 are linked to beam z2 and |z′2| signals of beam z′2 are linked
to z1. This way, a loop is created.
We first recursively call constrained_type on e1 and e2 in order to get the constrained types of e1 and e2.
Structural constraints are checked immediately after that. We check on the two sets of connexions, respec-
tively at the input and output of e1.
The generation of the resulting constrained type is then handled by the function loop_equality, which han-
dles what is basically the equivalent of two calls of the e1 : e2 case and a call to widening.
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I use widening for the moment, but my goal is to use a better approximation through abstract interpretation,
first basing myself on works like [23].

All the aforementioned elements yield the following outline for our algorithm.

constrained_type: R × C −→ E −→ K + fail

constrained_type (r,c) e = case e in

i =>
if i ∈ dom r then

let (t, l) = r i
let l′ = map new_unification_variable l
let t′ = map (λxy (substitution x y t) ) l l′

( t′, (∅, l′) ∪ c )
else fail

e1 : e2 =>
let ( ((z1,z′1),c′1) , ((z2,z′2),c′2) ) = map (constrained_type (r,c)) ( e1 , e2 )
if |z′1| = |z2| then

subtype (c′1 ∪ c′2) (z′1,z2)
else fail

e1 , e2 =>
let ( ((z1,z′1),c′1) , ((z2,z′2),c′2) ) = map (constrained_type (r,c)) ( e1 , e2 )
( (append z1 z2, append z′1 z′2) , c′1 ∪ c′2 )

e1 <: e2 =>
let ( ((z1,z′1),c′1) , ((z2,z′2),c′2) ) = map (constrained_type (r,c)) ( e1 , e2 )
if ( |z′1||z2| 6= 0 & |z2|%|z′1| = 0 ) then

constrained_type ( r , c′1 ∪ c′2 ) ( split_to_seq ( e1 , e2 ) )
else fail

e1 :> e2 =>
let ( ((z1,z′1),c′1) , ((z2,z′2),c′2) ) = map (constrained_type (r,c)) ( e1 , e2 )
if (|z′1||z2| 6= 0 & |z′1|%|z2| = 0 ) then

constrained_type ( r , c′1 ∪ c′2 ) ( merge_to_seq ( e1 , e2 ) )
else fail

e1 ∼ e2 =>
let ( ((z1,z′1),c′1) , ((z2,z′2),c′2) ) = map (constrained_type (r,c)) ( e1 , e2 )
if |z1| ≥ |z′2| & |z′1| ≥ |z2| then

loop_approximation (c′1 ∪ c′2) ((z1,z′1),(z2,z′2))
else fail

else fail

3.2.3 Lower level functions

We shall now take a closer look at the functions that correspond to a lower level of abstraction that we used in
the constrained type computation. Their contents are not expanded in the main algorithm because it belongs to a
higher level of abstraction, which deals with higher order operations. These functions are presented in their order
of appearance in the constrained_type function.

A particular point of interest is the loop_approximation function, in which I plan later on to insert an approxi-
mation based on abstract interpretation, instead of the widening approximation currently in place. Other points of
interest are the split_to_seq and merge_to_seq functions, which respectively convert split and merge expressions
into equivalent sequential expressions.

We start our list with the functions corresponding to the e = i case of constrained_type.
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new_unification_variable : This function is called in the e = i case of the constrained_type function, where
it is used as an argument of map. It simply creates a new unificaton variable, which is actually an identifier, by
calling the constructor of the Identifier class. In our case, map is applied to the list l of variables of a type scheme
so that it generates a new list l′ where each element is the output of a call to new_unification_variable. Thus, l′ is
the list of unification variables instantiating the variables of the type scheme mentioned above.

substitution : This function is called in the e = i case of the constrained_type function, where it is used as
part of an argument of map. It replaces all occurences of identifier i1 by identifier i2 in type t. This way, it allows
to instantiate the type scheme variable i1 by unification variable i2.

We now continue with the functions related to the e1 : e2 case of our algorithm.

subtype : This function is called in the e1 : e2 case of the constrained_type function. It applies the function
typing_predicate before merging the generated constraint with the current constraint given as input. Here, con-
strained_type is used in the case of subtyping, hence the presence of the < operator as input.

Now, we can directly move on to the e1 <: e2 case of the constrained_type function.

split_to_seq : This function is called in the e1 <: e2 case of the constrained_type function. It converts e1 <:
e2 into an equivalent e′1 : e′2 expression. This conversion is mainly done by duplicating the signals of e1 inside a
bigger expression. The constraints are also reorganized accordingly.

Similarly, we now deal with the e1 :> e2 case of our algorithm.

merge_to_seq : This function is called in the e1 :> e2 case of the constrained_type function. It converts e1
:> e2 into an equivalent e′1 : e′2 expression. This conversion is mainly done by summing the elements of e1 into a
smaller expression.The constraints are also reorganized accordingly. It requires to modify the boundaries of the
related intervals and to pay attention to subtyping, which may occur at any time.

Finally, we deal with the functions that are called in the e1 ∼ e2 part of the constrained_type function.

loop_approximation : This function is called in the e1 ∼ e2 case of the constrained_type function. It en-
ables us to use typing_predicate multiple times before actually merging the generated constraints with the current
constraint given as input. Here, typing_predicate is used in the case of type equality.

widening : This function is called in the loop_approximation function. It widens the interval of each signal
of a beam to ]-∞,+∞[. This is the function I wish to optimize through the use of abstract interpretation.

3.3 Correctness theorems
The type_checking algorithm comes with both soundness and completeness conjectures. One of my current

areas of study is to prove these conjectured theorems.

3.3.1 Soundness

If the type_checking algorithm returns a type t for the expression e, then the typing rules allow the definition
of this type t for expression e.

Theorem 1. Soundess of the type_checking algorithm

Let e ∈ E, r ∈ R and c ∈ C

If constrained_type (r,c) e = (t,c′)

and solve c′ = m

Then r ` e : m t

3.3.2 Completeness

If the typing rules allow the definition of type t for expression e, then the type_checking algorithm either
returns this type t or a subtype of t for expression e.
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Theorem 2. Completeness of the type_checking algorithm

Let e ∈ E, r ∈ R, c ∈ C and t ∈ T

If r ` e : t and solve c 6= fail

Then ∃ m ∈ M such that

constrained_type (r,c) e = (t′,c′), solve c′ = m and t ⊃ m t′

4 Current work and study perspectives
4.1 Completion of the current algorithm
4.1.1 Solver

The solver part of the algorithm is currently being designed, based mainly on the Z3 [15] and Gecode [18]
solvers. Other works which may prove to be of interest in this study are the veriT [3] and Redlog [6] solvers. The
structure of these projects shall serve as the general model for the solve function of the type_checking algorithm.
Practically, the function solve takes as input a constraint and either returns a model or fails, thus yielding the
following signature:

solve : C −→ T + fail

Here, the use of fail shall be more developped, as there is a difference to be pointed out between unsatisfiable
constraints systems, systems whose satisfiability cannot be determined and the other usual occurences of failure .

All in all, the idea here is to create a lighter solver using only the theories that are required in our case of
study. Thus, I would still use the congruence closure core of these solver models so that the related SAT solver
may call the theories it needs through this core module. This would yield the following architecture.

This architecture mainly follows the models mentioned above, but with an abstract interpretation theory to be
added to already existing theories.

A first step for the related implementation work would be to give the resulting constraint of the constrained_type
function as an input to existing solvers. The constraints of my algorithm are thus to be translated into smt-lib [2]
so that they may be handled by the existing solvers such as Z3. This way, the solver part of the main algorithm
would be handled externally at first, thus enabling me to get a working global implementation that would be
refined and made totally autonomous in a second time.

4.1.2 Proofs of the theorems

The proofs of the correctness theorems are also being designed at this moment. They are based on induction
on the input expression, following the proofs presented in [5] and [9]. I currently admit the correctness of the
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solver part of the algorithm in order to already provide proofs involving the prior constraints generation part.
Once the solver part of the algorithm is designed, I shall try to prove the correctness of some specific cases of this
part as well.

Moreover, there are additional tracks of study for refining and extending these theorems. The following
points are possible improvements I could apply to the theorems presented above. The main idea is to enhance the
reliability of the type inference algorithm by avoiding to cast away solutions that were in reality acceptable.

Another approach to the soundness theorem is the following.

∀t ∈ T / e : t,∃ s / t = s(t∗)

where s is a substitution from type to type and t∗ is the type assigned to e by the typing rules.

What this formula states is that there exist substitutions allowing an expression e to have types that are equiv-
alent to the one assigned by the typing rules. This case of study would provide additional decidable cases by
linking equivalent types through substitution. This way, types that would have been ruled out for not being equal
to t∗ may be considered. Subtypes provide such an example.

Another approach to the completeness theorem is to replace t⊃m t′ by t = m t′ through the use of constrained
types. With constraints on the intervals, it would be possible to force t to have the same interval as m t0. The
base types being equal due to the constraints and conditions encountered during the type inference algorithm, this
new approach would thus yield type equality instead of just subtyping.

4.2 New elements for the current algorithm
4.2.1 Multirate Faust

The current version of this project deals with the actual monorate version of Faust, and its very next goal
is to then handle its multirate version, which was introduced in [10], [11] and [12]. In the very near future, I
shall expand our algorithm to the multirate version of Faust. This will lead me to consider additional constraints
concerning rates, as well as vector structures. Faust types are extended with information on the signal rate.

The implementation of the multirate version of Faust is currently under way at GRAME, and a first imple-
mentation has been made available on the SourceForge account of Faust. A first prototype of this multirate
implementation is also available inside the Faustine interpreter.

4.2.2 Completion of the implementation

An implementation in OCaml, using the ground work laid by the Faustine interpreter [1], is currently being
developped. This is a first prototype that will then be translated into C++ in order to be inserted inside the actual
Faust compiler, so that it may be made available along with the official Faust release.

Based on this type checking algorithm, and using the classes infrastructure that is introduced throughout this
document, it takes a Faust expression as input and outputs its type if it runs successfully. Right now, the algorithm
and its implementation are handling the monorate version of Faust. My goal is now to have it handle the multirate
case as well.

4.3 Further improvements
4.3.1 Use of abstract interpretation

Including an abstract interpretation aspect is part of the current tracks of studies for this algorithm. This
would enable me to optimize the handling of the loop case of the Faust syntax. In order to do so, I shall use
an approximation based on abstract interpretation instead of the current approximation based on widening. A
particular notion of interest is to define a fixed point operator for use in this particular case.

In addition to inserting this construction inside the typing rules, I am currently studying two additional differ-
ent approaches, which are to :

• insert this construction outside of the typing rules and directly set it into the constrained type generation
part of the algorithm,

• insert an abstract interpretation theory in the theories module of the solver.

In order to get a better grasp of the developments already made available, I am currently studying existing
works on abstract semantics for type systems, especially in the case of static type systems.
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4.3.2 Integration into the Faust compiler

Currently, my implementation work has been dedicated to a prototype in OCaml of the type checking algo-
rithm. This implementation currently relies on external solvers and is planned to be extended to the multirate
version of Faust. Once these points are dealt with, this prototype in OCaml is to be converted to C++ and in-
tegrated into the Faust compiler. In order to achieve this, I shall of course translate the OCaml code into an
equivalent C++ implementation, but I shall also implement my own solver instead of relying on external tools.

5 Additional prospective approaches
5.1 Polychronicity

A main further area of study to optimize the compiler of the Faust programming language is synchronicity,
and especially polychronicity. Polychronous systems may have multiple clocks, which will be useful in the case
of the multirate version of Faust. Such systems are the focus of the Polychrony framework [13], developped at
IRISA. The main idea in the case of my thesis is to have a separate clock for every single frequency appearing in
a Faust program.

The study of polychronous systems is recurrent in many research projects related to synchronous program-
ming. It is a global theme that will surely be dealt with, no matter which particular synchronicity research subject
I focus on.

5.2 Additional synchronicity studies
There are also numerous additional branches of study in the synchronous world such as :

• end-to-end latency,

• sequential constructivity,

• synchronous concurrency.

End-to-end latency provides constraints on synchronous systems. Sequential constructivity would enable me
to set up an internal clock in Faust in order to manage input streams with different frequencies. Sequentially
constructive concurrency would give me the tools to make constructive semantics for Faust.

I am studying several current areas of research so that I may find the most interesting domains of work for my
PhD thesis. Currently, I am gathering global information on these subjects so that I may make informed decisions
concerning the tracks I want my thesis to focus on.

5.3 Other tracks of study
In a general manner, typing rules are implicitly used in the current code of Faust but with no specification.

In addition to the specifications I am already working on, it would be useful to insert the rewrite rules of Faust
inside the typing system of Faust instead of having them directly implemented inside the compiler. It would also
be interesting to try to prove the causality and termination of Faust programs. These are currently surmised. Such
proofs could be made using Coq, and getting inspired from the proof of Compcert.

6 Doctoral courses and other skills
6.1 Scientific courses

Scientific courses have enabled me to get more acquainted with the current status of research on type systems
and synchronicity, which are the two main areas of study realted to my PhD work.

The first class I took was a course on type systems and type inference at the “Master parisien de recherche
en informatique” (MPRI): “Functional programming and type systems.“ It was organized by Xavier Leroy and
Giuseppe Castagna, along with Didier Rémy and Yann Régis-Gianas. It is registered on my DOMINO account
as 48 hours of scientific and technical courses.

The second class I took was a course on recent issues related to synchronicity and clocks at the “Collège de
France”: “Enlarged time: multiple clocks, discrete times and continuous time.” It was organized by Gérard Berry
and involved external lecturers as well. It is registered on my DOMINO account as 12 hours of scientific and
technical courses.

These two courses are registered on my DOMINO account as 60 hours of scientific and technical courses,
thus completing the 60 hours requirement for this category of courses.
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6.2 Professionalizing courses
All the following courses have been provided by MINES ParisTech.

The first class I took was a course on bibliographical research: “Scientific publishing: strategies, tools and
research optimization.” It is registered on my DOMINO account as 13 hours of professionalizing courses.

The second class I took was a course training me to promote my final PhD experience: “Point de départ.” It
is registered on my DOMINO account as 14 hours of professionalizing courses.

The third class I am registered to is a course on fundamental law notions: “Practical law elements for life in a
company.” This shall probably prove very useful further on. It will be registered on my DOMINO account as 30
hours of professionalizing courses.

These three courses will register on my DOMINO account as 57 (27 + 30) hours of professionalizing courses,
thus leaving 3 remaining hours to fulfill.

In addition to these classes, the welcoming day of PhD students, providing global information about PhD
organization, is also listed as a formation on my account.

6.3 English language proficiency
I got the following scores at the Toefl IBT : 103/120 (2009), 107/120 (2011). Official score reports for the

Toefl IBT are available up to two years after the test, which is why I took the test in 2011 when the two-year
period since 2009 was over.

In addition to these, I have a graduate degree from Columbia University in the City of New York : a Master
of Science. I achieved it from 2011 to 2013 in the Computer Science Department of Columbia University. All
my work and studies there were conducted in English.

7 Previsional planning
These are the previsional steps for the rest of my PhD thesis, which show how I plan to organize the comple-

tion of the points I presented earlier in this report.

• Step 1 : 2014

– Final type checking algorithm handling multirate Faust and vectors, with a complete OCaml imple-
mentation.

– Presentation for workshops.

• Step 2 : 2014 - 2015

– Refinment of the widening by abstract interpretation.
– Insertion of new synchronous developments.
– Article for conferences.

• Step 3 : 2015 - 2016

– Integration in the C++ compiler of Faust.
– Delivery of the PhD thesis.

8 Conclusion
Currently, the main scientific contribution of my PhD work is the type checking algorithm of the Faust pro-

gramming language. Through the design of this algorithm, I am providing a static typing system for Faust, thus
optimizing its compiler.

In its present form, this typing algorithm is actually handling the monorate version of Faust and will soon
handle the multirate version as well. This extension will require an update of the specifications so that they may
handle the presence of a frequency field in Faust types.

My immediate work is to finish the prototype of the type checking algorithm in OCaml. In order to do so, I
am currently completing the implementation of the monorate version of type_checking. Once this is done, I shall
include vector structures and constraints on rates.
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Longer term perspectives are focusing on the inclusion of abstract interpretation in the algorithm and on
additional synchronous developments such as polychronicity. My ultimate goal is to integrate the type checking
algorithm into the C++ compiler of Faust itself, thus making it an integral part of the Faust programming language.

In parallel of all this work, I have made presentations of my PhD thesis status during the meetings of the
FEEVER project and at the IRISA center of INRIA. There is also a presentation on liquid types that is available
online. I had presented it during the monthly seminars of CRI.

Eventually, I plan to finish the OCaml prototype by the end of 2014, while continuing the study of devel-
opments based on abstract interpretation and synchronicity until the end of 2015. Once these points have been
treated, I shall insert this type checker into the actual compiler of Faust and deliver my PhD thesis.
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