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Abstract 
High Performance Computing (HPC) aims at providing reasonably fast computing 
solutions to scientific and real life problems. Many efforts have been made on the way to 
powerful supercomputers, including generic and customized configurations. The advent of 
multicore architectures is noticeable in the HPC history, because it has brought the 
underlying parallel programming concept into common considerations. At a larger scale, 
there is a keen interest in building or hosting frontline supercomputers; the Top500 ranking 
is a nice illustration of this (implicit) racing. Supercomputers, as well as ordinary computers, 
have fallen in price for years while gaining processing power. We clearly see that, what 
commonly springs up in mind when it comes to HPC is computer capability. However, 
when going deeper into the topic, especially on large-scale problems, it appears that the 
processing speed by itself is no longer sufficient. Indeed, the real concern of HPC users is 
the time-to-output. Thus, we need to study each important aspect in the critical path between 
inputs and outputs. The first step is clearly the method, which is a conjunction of modelling 
with specific considerations (hypothesis, simplifications, constraints, to name a few) and a 
corresponding algorithm, which could be numerical and/or non numerical. Then comes the 
topic of programming, which should yield a skillful mapping of the algorithm onto HPC 
machines. Based on multicore processors, probably enhanced with acceleration units, 
current generation of supercomputers is rated to deliver an increasing peak performance, 
the Exascale era being the current horizon. However, getting a high fraction of the available 
peak performance is more and more difficult. The Design of an efficient code that scales well 
on a supercomputer is a non-trivial task. Manycore processors are now common, and the 
scalability issue in this context is crucial. Code optimization requires advanced 
programming techniques, taking into account the specificities and constraints of the target 
architecture. Many challenges are to be considered from the standpoint of efficiency and 
expected performances. The present chapter will discuss the aforementioned points, 
interleaved with commented contributions from the literature and our personal views. 
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1. Introduction 
High Performance Computing has been on the spotlight for about two decades, driven by 
users clamor for more powerful systems and targeting more exciting applications. 
Significant technical changes have occurred, and noteworthy improvements have been done 
at various levels, thus pushing the limits of high performance computers. This phenomenon 
has even changed the rules of scientific discovery. Indeed, large-scale computation is now 
commonly considered in order to assess if a theory is consistent with experimental results, 
to question a large collection of data, or to understand a given mechanism through high 
precision simulations. HPC is thus going hand by hand with cutting-edge research. 

At the processor level, the sequential von Neumann execution model has governed 
the computing landscape for more than a half-century. Thus, the answer for more efficient 
processing was either a more powerful single-thread processor or an aggregation of 
cooperative computer systems.  Hardware designers have really strived to increase 
processor capabilities at different levels including clock speed (also referred to as frequency), 
instruction level parallelism (ILP), vector processing, memory size and global latency, mass 
storage capacity, and power consumption. Regarding parallel computers, they were mainly 
built by aggregating many standard processors (or machines) with a specific interconnect, 
thus expensive and very heavy to maintain. Thereby, and also due to the need of a 
particular skill, parallel computing, which was so far the unique choice for high 
performance computing, had a very limited effective consideration, despite intensive efforts 
at the fundamental standpoint. Back to the processor level, chip designers have always 
strived to stay ahead of Moore's Law, which prescribes that processor transistors count doubles 
every two years (Figure 1). This was still possible by adding transistors and logic to the 
standard CPU and increasing clock frequencies, until it becomes exceedingly impractical 
because of the power wall associated to the increase of processor frequency. Therefore, the 
idea of multicore processors came up, thus opening the door to the multicore era.  

 

Figure 1: Microprocessor Transistor Counts 1970-2010 & Moore’s Law 
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 This inflexion point in the evolution of computer systems was the beginning of 
important technical changes, including the emergence of new hardware devices. With the 
advent of multicore processors, manufacturers have taken that opportunity to keep 
providing increasingly powerful processors even to ordinary users, provided that they take 
the step towards parallel computing. Thereby, the notion of parallelism is extending to a 
wider audience, and will soon or later become a key item in computer science and 
engineering curricula. Multicore processors are being actively investigated and 
manufactured by major computer-processors vendors. At present, most contains between 4 
to 16 cores, and a few contain as many as 64 to 80 cores (so-called many-core). In addition, a 
multi-socket configuration allows getting more cores within the same motherboard. The 
programmer, in addition to the requirement of an explicit multi-threaded implementation, 
now has to face more complex memory systems. Indeed, the shared memory available on a 
multicore processor is typically made of several levels, different packaging and various 
management policies. Figure 2 displays a basic configuration with the Nehalem architecture.  

 

Figure 2: Nehalem Quadcore memory hierarchy 

 It is important to understand and keep in mind that all levels of parallelism need to 
be skillfully exploited in order to get the highest performance of a given modern 
(super)computer. The major part of the instruction level parallelism (ILP) is somehow 
granted by native hardware mechanisms or derived from a suitable instructions scheduling 
by the compiler. Vector processing, multi-thread computing and multi-process execution 
need to be managed by the programmer, although some compilers are capable of 
performing automatic vectorization whenever possible. The necessary skills for achieving an 
implementation that efficiently combines these specialized programming concepts is likely 
to stand beyond the reach of ordinary programmers. Valuable tools and libraries exist to 
assist the programmer in this non-trivial task, but a certain level of expertise is still needed 
to reach a successful implementation, both from the correctness and the efficiency 
standpoints. Figure 3 gives an overview of the three aforementioned levels of parallelism. 
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Figure 3: The three main levels of parallelism 

Figure 3 mentions GPU and FPGA, which are two major accelerators that can be 
considered for co-processing beside traditional CPUs. Graphic processing unit (usually 
referred to as GPU) is a specialized microprocessor that offloads and accelerates graphics 
rendering from the central processor. It was primarily a graphics chip, acting as a fixed-
function graphics processor.  Gradually, the chip became increasingly programmable and 
computationally powerful, thereby leading to the GPU. Now, GPU is used jointly with the 
CPU for general-purpose scientific and engineering applications. The first GPU was 
designed by NVIDIA, who is still one the leaders of the GPU development, with other 
companies like Intel and AMD/ATI. The highly parallel structure of modern GPUs makes 
them very efficient than traditional CPUs for algorithms where processing of large blocks of 
data can be done in parallel, in addition to classical stream processing applications. This has 
pushed computer scientist to start thinking about an effective use of GPU to accelerate a 
wider range of applications, thus leading to the advent of the so-called GPGP (General-
Purpose computation on Graphics Processing Units). In GPGPU, a GPU is viewed as a high-
performance many-core processor that can be used, under the management of a traditional 
CPU, to achieve a wide range of computing tasks at a tremendous speed. 

Indeed, technical efforts for HPC are noticeable. Advanced techniques are being 
explored for solving large-scale problems and lot of progresses are made on the 
programming side. However, number of technical and conceptual challenges remain, some 
of them being exacerbated by the increasing complexity of current and future HPC systems. 
Before describing key technical issues, let have a look at the global HPC landscape. 
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2 High-Performance Computing Landscape 
Interconnecting a large number of powerful multicore processors (probably accelerated) 
with a high-speed network is leading to impressive supercomputers. The current horizon is 
the Exascale, which is expected by 2018 (likely 2020 by a linear projection). Supercomputers 
are doing groundbreaking work that might not be possible without them, and this has 
changed the rules of science and industry. With computing possibilities running up against 
the far edge of current technology, researchers are looking for new ways to shrink 
processors, combine their power, and gather enough energy to make them all work 
efficiently. Computational capabilities are nowadays an essential part in cutting-edge 
scientific and engineering experiments. The capability to analyze and predict from huge 
amount data has incredibly improved with the use of supercomputers. Neuroscientists can 
evaluate a large number of parameters in parallel to find good models for brain activity; 
automobile manufacturers can perform more realistic crash simulation to improve safety; 
astronomers can analyze different regions of the sky in parallel to search for supernovae; 
nuclear and particle physics are moving beyond common belief with large-scale 
simulations; search engines can launch parallel search across large-scale clusters of 
machines and instantly aggregates the results, thus reducing the latency of each request 
while improving relevance and accuracy; cryptography and computer systems security will 
benefit from the computation of gigantic prime numbers; researchers in artificial intelligence 
are trying to use large supercomputers to replicate (or surpass) a high-functioning human’s 
ability to answer questions; social networking services are increasing their pervasiveness 
through  large-scale graph processing, text processing or data mining. 

While keep striving to provide breathtaking faster computers, designers need to 
contend with power and energy constraints. For decades, computers got faster by increasing 
their (aggregated) central processor unit. However, high processor frequency means lot of 
heat. Indeed, The Fujitsu K Computer, for example, has been using US$10 million of 
electricity per annum to operate. This question of energy is more crucial as computing are 
being reported to the “Cloud”, which is another innovative and affordable way to fulfill the 
need of high-range computing facilities. Indeed, Cloud computing offers a great alternative 
on mass storage, software and computing devices. Federating available computing 
resources, assuming a fast network, is certainly a valuable way to offer a more powerful 
computing system to the community. Energy, both dissipated and consumed, is also a 
critical concern, which is subject to active investigation from both the hardware and 
software standpoints. 

 From the programming point of view, harvesting hardware advances to rich the 
level of cutting-edge research expectations is more challenging. Indeed, beside the ambient 
enthusiasm around the evolution of supercomputers, the way to peak performances is far 
from straightforward. In addition to algorithmic efforts to express and quantify all levels of 
parallelism, specific hardware and system considerations have to be taken into account 
when trying to provide an efficient, robust, and scalable implementation on (heterogeneous) 
multi-core processors. This has brought an unprecedented level of complexity in program 
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design. Adapting a code for a given architecture or optimize it accordingly requires a 
complex set of program transformations, each of them addressing one or more aspects (e.g. 
registers, cache, instruction pipeline, data exchanges) of the target architecture. When the 
program is complex enough, or when the target architecture is a combination of different 
processing units (hybrid or accelerated computing), devising highly efficient programs 
becomes seriously hard. This is the price anyone should be aware of, when it comes to 
current and future states of high performance computing. 

The evolution of supercomputers performance is well depicted in the semi-annual 
top500 ranking. This has triggered an exciting competition among manufacturers and 
countries for fastest supercomputers. Being at the frontline in supercomputing 
infrastructures stands as an evidence of technical and scientific leadership. Alongside the 
ranking announcements, top500 reports provide a valuable collection of quantitative 
information for global statistics and trend analysis. Figure 4, for instance, provides a view 
on the performances evolution (aggregated and extremes) from the beginning of the top500 
ranking until November 2017 with a linear extrapolation up to 2020. 

 

Figure 4: Performance evolution overview from the top500 

The petaflops shown up for the first time in June 2008 top500 with the IBM Roadrunner, 
nearly ten years after the reach of the teraflops barrier in June 1997 by Intel ASCI Red. The 
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IBM press release (http://www-03.ibm.com/press/us/en/pressrelease/24405.wss) used a few 
analogies to describe the power of Roadrunner, such as “The combined computing power of 
100,000 of today's fastest laptop computers"; and, "It would take the entire population of the earth, - 
about six billion - each of us working a handheld calculator at the rate of one second per calculation, 
more than 46 years to do what Roadrunner can do in one day." From a linear extrapolation, a 
sustained Exascale performance is expected from 2020. It is amazing to realize that Sunway 
TaihuLight, the current world fastest supercomputer, is nearly 256 thousand times faster 
than the top ranked machine of the 1993 top500 edition, the Thinking Machines CM-5/1024. 
Figure 5 is a snapshot of the top10 machines from the top500 ranking of November 2017.  

 
Figure 5: Top ten machines of the November 2012 top500 

Sunway TaihuLight is based on the SW26010 many-core processor (256-core manycore). 
Each core is clocked at 1.45 GHz and the machine was ranked 16th most energy-efficient 
supercomputer in the latest Green500, with an efficiency of 6.051 GFlops/watt. This 
achievement is particularly noticeable. Indeed, in addition of being the first to cross the 
barrier of 100 PFlops, thus entertaining the hop of hitting the Exascale very soon, it was 
possible to get a top-ranked performance from both processing and energy standpoints 
without any accelerator. Nevertheless, the use of accelerators remains a good way to go 
when it comes to processing-energy efficiency. A nice example was Titan-XK7, the world 
fastest supercomputer in November 2012 (now 5th). Titan-XK7 is a hybrid supercomputer, 
means made up by a combination of commodity processors with coprocessors or graphics 
processing units (GPUs) to form heterogeneous high-performance computing systems. 
Roadrunner was the world’s first hybrid supercomputer, made up with 6,562 dual-core 
AMD Opteron® chips as well as 12,240 Cell chips (on IBM Model QS22 blade servers). 
Accelerated computing is prevailing over the use of conventional CPU-based architectures, 
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and is certainly the way to power aware supercomputing. Indeed, as supercomputers are to 
move beyond the Petascale and into the Exascale, energy efficiency is becoming a major 
concern. Note that power consumption, as a metric, was not even mentioned in earlier 
top500 editions. Now, this aspect has come to the spotlight, and there is a so-called Green500 
project, which aims at providing a ranking of the most energy-efficient supercomputers in 
the world. We now describe a selection of world-class computing systems. 

A) SUNWAY TAIHULIGHT – SUNWAY MPP 

Sunway TaihuLight, a system developed by China’s National Research Center of Parallel 
Computer Engineering & Technology (NRCPC), and installed at the National 
Supercomputing Center in Wuxi, is the current world fastest supercomputer, with a High 
Performance Linpack (HPL) sustained performance of 93.01 petaflops (over its 125 petaflops 
peak). Note that this supercomputer is top-ranked for the fourth consecutive time, with 
more than two times the overall peak of the former number one Tianhe-2.  The machine is 
made up with 40 960 SW26010 many-core processor (256-core manycore), thus a total of 10 
649 600 cores. The total amount of available memory is 1280 TB and the (bidirectional) 
network bandwidth is 16 GB/s.  Target applications include Oil prospecting, life sciences, 
weather forecast, industrial design, computational cosmology and pharmaceutical research to name a 
few. Figure 6 (from http://www.nsccwx.cn/wxcyw/) provides a view of Sunway. 

 
Figure 6: Sunway TaihuLight Supercomputer  

 

B) TIANHE-2 (MILKWAY-2) – TH-IVB-FEP 

Tianhe-2 (Milky Way-2), current number two of the latest top500 after being number one 
just before Sunway, is a system developed by China’s National University of Defense 
Technology (NUDT) and deployed at the National Supercomputer Center in Guangzhou in 
China. Next to Tianhe-1, Tianhe-2 supercomputer, which showed a High Performance 
Linpack (HPL) sustained performance of 33.86 petaflops (over its 54.90 petaflops peak), is 
made up with 16 000 compute nodes, each equipped with two Intel Ivy Bridge Xeon E5-2600 
processors and three Xeon Phi coprocessor chips (6x2 + 61x3 = 195 cores), thus making a 
total of 3 120 000 cores. The total amount of available memory is 1 PB and the (bidirectional) 
network bandwidth is 10 GB/s.  Target applications include scientific engineering, big data 
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processing, and high throughput computing to name a few. Figure 7 (from http://en.nscc-gz.cn/) 
provides a view of Tianhe-2. More technical details about Tianhe-2 can be found in [16]. 

 

Figure 7: Tianhe-2 Supercomputer  

 

C) PIZ DAINT – CRAY XC50 

Piz Daint, a Cray XC50 system installed at the Swiss National Supercomputing Centre 
(CSCS) in Lugano, Switzerland, is the current number three with a High Performance 
Linpack (HPL) sustained performance of 19.59 petaflops (over its 25.33 petaflops peak), 
reaffirming its status as the most powerful supercomputer in Europe. Piz Daint a hybrid 
CPU/GPU supercomputer. Piz Daint supercomputer is made up with hybrid and multicore 
nodes, Xeon E5-2690v3 12C 2.6GHz and NVIDIA Tesla P100, with a total of 361 760 cores. 
The total amount of available memory is 437 TB and the average network bandwidth is 
around 15 GB/s.  Target applications include scientific engineering, big data processing, and high 
throughput computing to name a few. Figure 8 (from https://www.cscs.ch/publications/photo-
gallery/) provides a view of Piz Daint.  

 
Figure 8: Piz Daint Supercomputer  
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D) TITAN - CRAY XK7 

Titan – Cray XK7, also a hybrid CPU/GPU supercomputer manufactured by the Cray 
Company, was ranked world’s fastest supercomputer in the November 2012 top500 ranking. 
The Cray XK7TM, installed at the Department of Energy’s Oak Ridge National Laboratory 
(ORNL / USA), has showed an outstanding 17.59 HLP over a theoretical peak of 27.11 
petaflops. The machine is made up with 299,008 16-cores AMD Opteron 6274. This 
aggregation of CPUs is combined with 261,632 NVIDIA Tesla K20 GPUs. The total memory 
space available is 710 TB, and the total power consumption is around 8.2 megawatts, which 
yields a remarkable (rank 2) performance/power ratio of 2.14 MFlops/watts.  The network is a 
3D-torus topology based on the Gemini interconnect, which is capable of tens of millions of 
MPI messages per second with 1.5 microsecond latency and a bandwidth of 20 GB/s for 
point-to-point transmissions. Figure 9 displays an overview of TITAN. 

 

Figure 9: TITAN Supercomputer 

 Among the set of applications that can notably benefit from the tremendous processing 
speed of Titan, Oak Ridge National Laboratory reported seismological simulations of the 
entire Earth (suggested by researchers from Princeton University), direct numerical 
simulation with complex chemistry to understand turbulent combustion, discrete radiation 
transport calculation, molecular studies, climate change adaptation and mitigation scenario, 
to name a few. We think that the presence of GPUs should somehow influence the range of 
potential applications that can be efficiently ported on such machine. A typically suitable 
application should allow a coarse grain task partitioning with locally interconnected stream 
processing nodes. 

E) IBM SEQUOIA 

Sequoia is a world-class IBM BlueGene/Q computer, which was ranked second world’s 
fastest supercomputer in the November 2012 top500 ranking, after being atop in the 
previous edition. The Sequoia, hosted at the Department of Energy’s Lawrence Livermore 
National Laboratory (LLNL / USA), has showed a distinguished 16.32 petaflops HLP over a 
theoretical peak of 20.14 petaflops. The machine, as mentioned here, is made up with 
1,572,864 1.6 GHz cores (16-cores CPUs), with a total memory of 1573 TB. Another attractive 



High Performance Computing Landscape and Challenges Claude TADONKI 

 

 11 

strength of Sequoia is its power consumption, which is estimated at 7.9 megawatts, thus 
making it a good candidate for high-performance computing and high-throughput 
computing as well. The network is a 5D torus bidirectional optical network with a 
bandwidth of 5 GB/s and a latency of 2.5 microseconds.  Figure 10 illustrates the packaging 
of Sequoia. 

 

Figure 10: Sequoia packaging 

The Sequoia is planned to be eventually devoted almost exclusively to simulations aimed at 
extending the lifespan of nuclear weapons. However, it flexible interconnect makes it a good 
choice for (block) stencil computation like the Lattice Quantum ChromoDynamics (LQCD) or 
Discrete Partial Differential Equation (DPDE). More classical applications are also considered 
like semiconductor and silicone design, financial modeling, climate and weather studies. The 
modest clock rate of each individual core suggests that the machine could be considered for 
large-scale memory bounded applications. Moreover, the noteworthy low power 
consumption of the BlueGene/Q makes it clearly adapted for high-throughput computation, 
with an affordable energy and maintenance cost.   

F) Fujitsu K-COMPUTER 

K-COMPUTER is a Fujitsu supercomputer, which was ranked third world’s fastest 
supercomputer in the November 2012 top500 ranking, after being atop in the 2011 edition. 
The K-Computer, hosted at RIKEN Advanced Institute for Computational Science (AICS / 
Japan), has showed an impressive 10.5 petaflops HLP over a theoretical peak of 11.2 
petaflops, thus an excellent processing efficiency. The heart of the K computer consists of 
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88,128 SPARC64™ VIIIfx 8-cores CPUs, thus a total of 705,024 cores. The overall global 
memory sums up to 1410 TB. The power consumption is around 12.7 megawatts, which 
yields a relatively high power per core compared to other machines of the top ten. However, 
we think that this controversy power consumption is well compensated by the close gap 
between sustained and peak performances. The K computer's network, called Tofu, uses an 
innovative structure called "6-dimensional mesh/torus" topology with a total throughput of 
about 5 GB/s and a microsecond latency for a point-to-point communication between two 
neighbor nodes. Figure 11 provides a view of K-Computer.  

 

Figure 11: K-Computer 

The K-Computer has been used on number of successful case studies. First, the machine 
took the first-place rankings in the 2011 HPC Challenge Awards, which considered various 
benchmarks aiming at testing different hardware capabilities. In addition, astrophysical N-
body simulations of one trillion particles were performed on the full system of the K 
computer and awarded the 2012 ACM Gordon Bell Prize. The 6-dimensional mesh/torus of 
the K-computer provides an exceptional communication flexibility, which makes it globally 
efficient on standard applications. As it uses to be with supercomputers, K-Computer is 
now open for shared use. 

3. Major HPC Bottlenecks and Challenges 
Let start with some basic quantitative notions related to supercomputers. 

a) Calculating   the overall peak performance 

The first thing that comes in mind with a supercomputer is its potential performance, also 
known (and refers to) as theoretical peak performance. This is rough calculation of the overall 
computing power that the considered computer can offer. The items that are mainly 
considered are: the total number of cores (regardless of the packaging); the processor clock 
rate; the length of vector registers (assuming floating point calculations from double 
precision standpoint); and possibility (or not) of a multiply-add (thus, 2 FP calculations per 
cycle) 
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Let consider the case of the IBM-Sequoia supercomputer for example. We have 

• Total number of cores = 1,572,864 

• Processor-core clock rate = 1.6 GHz (i.e. 1,6 x 106 Hz) 

• Each core has Quad FPU (4-wide double precision vector registers) 

• One cycle multiply-add feature available 

This gives  

1,572,864 ×  (1.6 ×  106) ×  4 ×  2 = 20.132659 ×  1015 ≈  20.14 PFlops 

We emphasize on the fact that the time from main memory to the computation units and 
also the time for interprocessor exchanges are not taken into account. The reader should 
kept it in mind and be aware that this is where comes the gap between peak and sustained 
performances. However, intra and extra data routings can be (partially) overlapped with 
calculations, at the expense of very skillful programming efforts. 

b) Evaluating interprocessor communication  

A supercomputer is composed of a large number or compute nodes that need to exchange 
data (inputs or intermediate results) in order to achieve the global assigned task. As said 
above, the time cost for interprocessor communication is roughly seen as an additional time 
over the pure computing time. For a single data communication, there a setup latency and a 
transmission time, which gives an estimation of the form Tc(L) = β + α×L. As multiple 
transfers can occur at the same time, the inverse of the latency (i.e. 1/β) is sometimes 
referred in the literature as the number of MPI communication that can be launched within 
a second. The physical network topology and the current data traffic will determine the 
effective cost. Indeed, a given point-to-point communication is unlikely to be direct because 
the communicating nodes might not be directly linked. This is why the physical topology is 
important, especially in the context of large-scale parallel computers.   

3.1 About Memory Accesses and Data Transfers 

Memory complexity remains a serious challenge both from hardware and software 
standpoints. Indeed, the part due to memory accesses and data transfers in the sustained 
performance with common applications is quite significant and even dominant in most 
cases. At the processor level, this is due to irregular memory access patterns, concurrent accesses, 
and non-uniform memory accesses. Applications that clearly illustrate this complexity are for 
example those based on stencil computation (image processing, simulations based on 
Cartesian space modeling, discrete iterations, computational fluid dynamics, to name a few). 
In addition to optimizing memory traffic, the programmer now needs to care about cache 
memories sharing, with a direct consequence on the performance scalability. In a distributed 
memory context like with distributed memory parallel machines or cloud computing 
systems, the main bottleneck is the cost of moving data. With accelerators, the main issue is 
on data exchanges between the accelerator device and the host machine. We now comment 
each of the aforementioned points. 
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3.1.1 Non-Uniform Memory Access Architectures  

Modern CPUs are typically made up with an increasing number of cores in order to deliver 
a higher peak performance. As the increase of the CPU clock frequency has been somehow 
frozen because of circuit integration limits and the energy concerns [2], the trend is to 
provide more and more cores within a single CPU, with a fully shared memory. Nowadays 
and future supercomputers are just an interconnected aggregation of such nodes [3, 4, 5]. 
The packaging of a high number of cores within a single chip tends to look like a hardware-
connected block of conventional multicores, thus providing a global memory space with a 
non-uniform access. This Non-Uniform Memory Access (NUMA) configuration is seamless 
to an ordinary programmer, as there is a unique virtual addressing. Within a NUMA node, 
the memory system is exactly the same as for an ordinary multicore. Between NUMA nodes, 
specific links, like the Quick Path Interconnect (QPI), connect local memories together 
following a specific topology. A memory access in a given NUMA node is said to be local 
(resp. remote) if the request comes from a core within that (resp. another) NUMA node. This 
looks like an on-chip distributed memory configuration. Figure 12 displays a typical single-
socket NUMA configuration with 4 nodes, while figure 13 (from [6]) illustrates multi-socket 
cases. 

     

Figure 12: Sample NUMA configurations with 4 nodes 

 
Figure 13: Sample multi-socket NUMA configurations 

NUMA configuration was designed to alleviate the bottleneck scenario where all 
CPU-cores use the same unique bus to access the main shared memory, thereby keeping a 
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high probability of a good scalability over a large number of cores. Unfortunately, good 
scalability can be obtained only if memory accesses are mostly local. Indeed, remote accesses 
are more costly by nature and might incur more contention both on the QPI link and within 
the targeted NUMA node (because local accesses might be carried on at the same time). This 
potential memory controller saturation or QPI contention is the common culprit of speedup 
stagnation on NUMA manycores. 

Efficient data placement and threads management for better scalability on NUMA 
systems is a hot topic. Stefan et al. propose a library for parallel programs on NUMA 
machines, based on array abstraction and memory allocation routines, which allows 
automatic tuning of data placement and accesses for better scalability [7]. Specific 
contributions [8, 9, 10, 11, 12] suggest a way to optimize thread and data placement in a 
NUMA system by combining data locality and thread binding, in order to reduce remote 
accesses. Lin et al. [13] propose an efficient stencil computation using many-core NUMA 
architectures, targeting higher performance and portability. Interesting specific cases are 
studied and reported by C. Tadonki in [14, 15]. 

3.1.2 Data motion in a distributed memory context 

3.1.2.1 The Case of Distributed Memory Parallel Machines 

 We have so far focused on the global processing speed that supercomputers can 
offer to end-users, with an emphasis on the local efficiency of the computing node and how 
much is there on the machine. Indeed, a supercomputer is made up with several 
independent computing nodes, but they need to cooperate and exchange data in order to 
execute a macroscopic task. What we get from there is the so-called sustained performance, 
which is most of times far from the theoretical peak. In addition to the gap between 
sustained and peak performances on a node, there is an additional overhead coming from 
data exchanges between nodes, which is the main concern of the interconnect efficiency. 
First note that this aspect is not counted when estimating the peak performance, nor 
external I/O operations. However, depending on the application, data communication can 
yield a significant impact on the overall performance, thus breaking the scalability on large-
scale supercomputers. The special case of applications involving stencil computation is 
noteworthy.  The Lattice Quantum ChromoDynamics (LQCD), the lattice discretized theory 
of the strong nuclear force, is a nice example with a gigantic number of sites, each of them 
having 8 neighbors [16]. When two computing nodes have to exchange data, it is well 
known that this is better done with a direct communication whenever possible; otherwise a 
slower multi-hop transfer will take place. The concern here is the mismatch between the 
virtual topology (from the scheduling) and the physical one (from the target machine). The 
interconnect of a supercomputer should offer a good flexibility for internode 
communication. The underlying topology should exhibit either high local degrees or shorter 
internode distances. Figure 14 outlines a classical interconnect available on supercomputers.  
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Figure 14: Typical supercomputer interconnect 

Alongside network topology and bandwidth, communication latency is crucial. The state-of-
the-art is around a microsecond, which is acceptable for a point-to-point communication, 
but less for a multi-hop transfer. Depending on the physical topology and traffic, 
interprocessor communication might suffer from network congestion, resulting in a 
significant increase of the sustained latency. Overlapping computation and communication 
will certainly remain a key ingredient for scalability. 

3.1.2.2 The Case of Cloud Computing Systems with Distant Datacenters 

In the Cloud Computing ecosystem [17, 18], it is common to operate with several 
distant datacenters, each of them offering different storage capacity and processing speed. 
This distributed computation, both from task and data standpoints, needs to be skillfully 
scheduled to achieve an acceptable efficiency, especially in the context where non-locality 
and heterogeneity apply. The most critical point here is data migration [19, 20]. To achieve 
good performance and scalability in a Cloud environment with geographically distributed 
datacenters, data migration should be prevented at the best (through tasks migration instead, 
processing-migration overlap, dataflow optimization, …) together with an efficient load 
balancing strategy. Considering a given scheduling methodology, the input workflow might 
be partitioned into subtasks that are assigned to different datacenters following some of the 
aforementioned efficiency concerns. Afterwards, processing a subtask might require data 
migration or replication, which can yield a significant slowdown, especially with a huge 
amount of data (the case with big data applications for instance). An efficient data placement 
strategy is thus needed in order to yield a more scalable system. This is important for the 
users as they are under the pay-as-you-go rule, and for the providers too who need to 
optimize their services and resources pooling. 

3.1.3 Data Exchanges with Accelerators   

In addition to the absolute performance and scalability issues with conventional 
(multicore) processors, power consumption has quickly become another critical point. The 
concern is still to compute quite quickly, so as to save energy by reducing the overall 
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running time. The idea that has come in mind to tackle this is the use of accelerators. An 
accelerator is a specialized unit dedicated to a specific kind of tasks that will be executed 
with an unbeatable performance. The Graphic Processing Unit (GPU) is one of such devices.  
At the earlier stage of GPGPU, the main concern was how to efficiently exchange data 
between the CPU and the GPU. This CPU-to-GPU bottleneck [20], often shirked in some 
very optimistic reports, has been one of the main hurdles on the GPGPU ascent. Another 
critical point was the severe slowdown on double precision processing, which is essential in 
cutting-edge numerical studies. These two issues have been seriously addressed in current 
generation GPUs, thus making them an effective general purpose computing alternative. In 
certain applications requiring massive vector operations, this can yield several orders of 
magnitude higher performance than a conventional CPU. Figure 15 displays an example of 
processing time improvement of a GPU over a traditional CPU. This example, taken from 
the NDVIDIA website, reports a benchmark about solving Navier-Stokes equations on 
various grid sizes. Other reported success stories are: a 12x speedup on an orthorectification 
algorithm and a 41x speedup on the pan sharpening process by Digital Globe; a 3x (resp. 5x) 
speedup on solving a linear system and a 8x speedup on solving second-order wave 
equation in MATLAB [21, 22]; a 8x speedup on basic linear algebra subroutines (cuBLAS) 
[23]; to name a few.  

 

 

 

Figure 15: Illustrative GPU speedups 

 

The use of GPUs to faster the computation is really coming to the vogue, with the 
hope of saving energy through shorten execution times. This has motivated the 
consideration of hybrid CPU/GPU supercomputers and the use of GPU a key device in 
Cloud computing [24]. Another important point when it comes to parallelism among GPUs 
is data exchanges, which still need to transit via the referent CPU. This problem is also 
addressed in current and future generations of GPU, with the aim of having a direct 
cooperation between the GPUs. Figure 16 illustrates one aspect of the concept via the so-
called dynamic parallelism [25]. 
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Figure 16: Dynamic parallelism with GPUs 

 

3.3 Conceptual and Technical Factors Related to Scalability 

Processor manufacturers are constantly improving their products by tweaking CPU 
components and implementing new hardware concepts. The aim is to keep providing 
increasingly powerful computers for basic issues and large-scale supercomputers for 
cutting-edge research and engineering. There is a kind of game between progresses and 
needs, where we iteratively push the limits and try to go beyond. Harvesting computing 
cycles for science will certainly change the landscape of experimental research and shorten 
the path to scientific discovery and technical insights. 

As we have so far explained, increasing the (aggregated) processor speed raises 
number of technical challenges that need to be addressed carefully in order to make their 
benefit clear to the community. Indeed, the gap between the peak performance and the 
sustained performance is a genuine concern. This is like gross salary and net salary from the 
employee viewpoint. Users expect supercomputers to be powerful enough for their 
applications, not in absolute. Thus, getting close to the maximum performance will be a 
crucial request. From the hardware point of view, this means number of improvement: 
memory latency at all hierarchy levels should be reduced; opportunity should be given to 
the programmer to manage memory features as desired; data exchanges between different 
memory levels should be improved by adding additional buses; the penalty for accessing 
distant parts of a NUMA memory should be revisited; the set of vector instructions should 
be soundly extended; network capability should be improved (topology, bandwidth, and 
latency) in order  to lower enough the communication overhead.   

The question of heat dissipation and power consumption will sit on top of major 
concerns. It is possible that, at some points, performance will be sacrificed because of the 
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energy constraint. A typical node of a supercomputer will be made of a traditional multicore 
processor with several moderate cores, coupled with high-speed accelerator units (mainly 
GPUs). The idea behind relying on accelerators is that they will be fast enough to 
significantly reduce the overall execution time, thereby reducing the corresponding heat 
dissipation. It is important to understand this is a local reasoning, the case of high 
throughput computation remaining problematic. Indeed, we cannot expect to always 
compute by spots. Certain kinds of application like simulations, tracking, data assimilation, 
to name a few, require continuous heavy calculations. The question will be how to keep the 
benefit of acceleration over a long period of computing time without the punishment of an 
unacceptable power consumption or hardware failure. Thus, research investigations on the 
energy efficiency of computing systems will be of a particular interest, both from the 
hardware side and the programming standpoint.  Alongside these efforts, researches on 
efficient and affordable cooling systems will be also crucial.  

Another trend for future innovation, a part from increasing processors horsepower, 
is the ability to leverage distant power with an increasingly diverse collection of devices. 
Cloud computing offers a great alternative on mass storage, software and computing 
devices. Federating available computing resources, assuming sufficiently fast network, is 
certainly a valuable way to offer a more powerful computing system to the community. The 
main advantage is that the maintenance cost is mutualized and the users pay only for what 
they have really consumed.  In addition, more related to the Software as a Service (SaaS) 
feature, users instantly benefit from updates, new releases, and new software. There is also 
an opportunity to share data and key parameters. This approach of federating available 
resources can be also seen as a way to save power consumption, as it prevents wastage. The 
topic of cloud computing is coming to the vogue and will probably be adopted for major 
large-scale scientific experiments, assuming non-sensitive data. The challenge for computer 
scientist is how to efficiently schedule a given set of tasks on the available set of resources in 
order to serve the request at the user convenience, while taking care of energy. 

From the programming point of view, there are number of serious challenges that 
need to be addressed or remain under deeper investigations. The heterogeneity of current 
and upcoming supercomputers requires the use of hybrid codes, which is another level of 
programming complexity. One might think of using (semi-)automatic code generators, thus 
concentrate on a higher-level abstraction. Programmers will, at certain point, rely on the 
output of those code generation frameworks, which is not always easy to accept, and 
otherwise raises a number of practical issues related to debugging, maintenance, adaptability, 
tuning, and refactoring. Figure 17 displays an example of a complex code design framework 
[3]. 
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Figure 17: Sample hybrid HPC programming chain 

 

As the number of cores is increasing, with various packaging models, scalability 
will be an important issue for programmers. Some of the considerations that suited for 
single-threaded code have to be revised when it comes to multi-threaded version. Data 
locality is one of them, since the so-called false sharing is also caused by an inappropriate 
locality. Mixing distributed memory model and shared memory model should become a 
standard.  

2. Conclusion 
High Performance Computing currently stands as a hot topic both for computer 

scientists and end users. The level of expectations is increasing, motivated by the noticeable 
technical advances and what is announced at the horizon. Harvesting a high fraction of the 
available processing power to solve real life problems is a central goal to achieve, as the gap 
between the theoretical performance and the sustained efficiency is more and more 
perceptible on modern supercomputers. From the scientific viewpoint, there are number of 
challenging achievements that are expected in order to come up with efficient and scalable 
computing solutions. Each involved topic is subject to intensive researches, with significant 
discoveries that are already effective. However, the connection among these individual 
advances need to be more investigated. This should be one of the major concerns of future 
HPC investigations. 

Solving large-scale problems in a short period of time using heterogeneous 
supercomputers is the main concern the high performance computing. We found that 
combining the advances in continuous optimization with suitable mathematical programming 
formulation of combinatorial problems remains the major approach in operation research. 
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However, there is lack of studies on implementing state-of-the-art optimization methods on 
modern supercomputers. This is great technical challenge that I want to keep investigating. 
The branch-and-bound, for instance, is quite irregular and is likely to exhibit an elusive 
memory access pattern. Providing the right response to the load balancing issue that will 
certainly show up from a standard scheduling is a challenging task, but very important for 
efficiency and scalability. From a fundamental point of view, there is a need to reformulate 
problems accordingly, with a strong collaboration with people directly involved with real-
life applications.  

Another interesting topic we which to consider is automatic code generation for HPC. 
Programming current and future supercomputers is becoming more and more difficult, 
mainly because of their heterogeneity. In addition, obtaining a high fraction of the 
increasing peak performance is technically hard. One way to obtain an efficient code is to 
locally optimize each of its critical parts. Another way is to act at the code generation level. 
Tailoring a code to adapt or achieve the best possible performance on given architecture 
requires a complex set of program transformations, each designed to satisfy or optimize for 
one or more aspects (e.g. registers, cache, TLB, and instruction pipeline, data exchanges) of 
the target system. When the processing code is becoming complex, or when the target 
architecture is a combination of different processing units (hybrid or accelerated), it becomes 
very hard to handle the task by hand. Thus, it is highly expected to be able to achieve the 
necessary code transformations in a systematic way. We plan to keep investigation this 
topic, which involves compilation techniques, hardware comprehension, and performance 
prediction. 

References 
[1] Xiang-Ke Liao, Liquan Xiao, Canqun Yang, Yutong Lu, MilkyWay-2 supercomputer: 
System and application, Frontiers of Computer Science 8(3): 345-356, DOI10.1007/s11704-
014-3501-3, 2014. 

[2] A. Leite, C. Tadonki, C. Eisenbeis, and A. De Melo, A fine-grained approach for power 
consumption analysis and prediction, Procedia Computer Science (Elsevier), vol. 29, pp. 2260–
2271, 2014. 

[3] C. Tadonki, High Performance Computing as a Combination of Machines and Methods and 
Programming, Habilitation Thesis, University Paris-Sud, May 2013. 

[4] P. Kogge et al., ExaScale Computing Study: Technology Challenges in Achieving Exascale 
Systems, DARPA report, 2008.  

[5] E. W. Nagel, D. B. Krner, and M. M. Resch (Eds.), High Performance Computing in Science 
and Engineering, Springer Book Archives, 2013. 

[6] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman, NUMA-aware algorithms: the case of 
data shuffling, http://www.pandis.net/resources/cidr13numashuffling.pdf, 2013. 



High Performance Computing Landscape and Challenges Claude TADONKI 

 22 

[7] S. Kaestle, R. Achermann, T. Roscoe, T. Harris, Shoal: smart allocation and replication of 
memory for parallel programs, USENIX Annual Technical Conference, July 8–10, 2015, Santa 
Clara, CA, USA ISBN 978-1-931971-225,2015. 

[8] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, M. Roth, 
Traffic Management: A Holistic Approach to Memory Placement on NUMA Systems, ASPLOS’13, 
March 16–20, 2013, Houston, Texas, USA 2013 ACM 978-1-4503-1870-9/13/03. 

[9] B. Lepers, V. Quéma, and A. Fedorova, Thread and memory placement on NUMA systems: 
asymmetry matters, In Proceedings of the 2015 USENIX Conference on Usenix Annual 
Technical Conference (USENIX ATC ’15). USENIX Association, Berkeley, CA, USA, 277-289 

[10] R. Lachaize, B. Lepers, and V. Quéma, MemProf: A memory Profiler for NUMA Multicore 
Systems, In USENIX ATC, 2012 

[11] A. Collins, T. Harris, M. Cole, C. Fensch, LIRA: Adaptive Contention-Aware Thread 
Placement for Parallel Runtime Systems, In ROSS, 2015 

[12] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman, NUMA-aware algorithms: the case 
of data shuffling, http://www.pandis.net/resources/cidr13numashuffling.pdf, 2013. 

[13] P. Lin, Q. Yi, D. Quinlan, C. Liao, Y. Yan, Automatically Optimizing Stencil Computations 
on Many-core NUMA Architectures, International Workshop on Languages and Compilers for 
Parallel Computing Rochester, NY, United States September 28, 2016 through September 30, 
2016. 

[14] O. Haggui, C. Tadonki, L. Lacassagne, F. Sayadi, B. Ounid , Harris Corner Detection on a 
NUMA Manycore, Future Generation Computer Systems (DOI: 10.1016/j.future.2018.01.048), 
2018. 

[15] C. Tadonki, Scalable NUMA-Aware Wilson-Dirac on Supercomputers, International 
Conference on High Performance Computing & Simulation (HPCS 2017), Genoa, Italy, July 
17-21, 2017. 

[16] Frank Wilczek, What QCD Tells Us About Nature and Why We Should Listen, Nuc. Phys. A 
663, 320, 2000. 

[17] A. Ferreira Leite, A. Boukerche, A. C. Magalhaes Alves de Melo, C. Eisenbeis, C. 
Tadonki, and C. Ghedini Ralha, Power-Aware Server Consolidation for Federated Clouds, 
Concurrency and Computation: Practice and Experience (CCPE), ISSN: 1532-0626, Wiley 
Press, New York, USA., 2016 

[18] A. Ferreira Leite, V. Alves, G. Nunes Rodrigues, C. Tadonki, C. Eisenbeis, A. C. 
Magalhaes Alves de Melo, Dohko: An Autonomic System for Provision, Configuration, and 
Management of Inter-Cloud Environments based on a Software Product Line Engineering Method, 
Cluster Computing Special, 2017. 



High Performance Computing Landscape and Challenges Claude TADONKI 

 

 23 

[19] Y. Samadi, M. Zbakh, and C. Tadonki, Graph-based Model and Algorithm for Minimizing 
Big Data Movement in a Cloud Environment, Int. J. High Performance Computing and 
Networking, 2018. 

[20] Luan Teylo, Ubiratam de Paula, Yuri Frota, Daniel de Oliveira, Lúcia M.A.Drummond, 
A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific 
workflows on clouds, Future Generation Computer Systems vol. 17, pp. 1-17, November 2017.  

[20] Chris Gregg and Kim Hazelwood, Where is the Data? Why You Cannot Debate CPU vs. 
GPU Performance Without the Answer, International Symposium on Performance Analysis of 
Systems and Software (ISPASS), Austin, TX. April 2011.  
http://www.cs.virginia.edu/kim/docs/ispass11.pdf  

[21] http://www.mathworks.fr/products/demos/shipping/distcomp/paralleldemo_gpu_backslash.html  

[22] http://www.mathworks.fr/company/newsletters/articles/gpu-programming-in-matlab.html 

[23] https://developer.nvidia.com/cublas  

[24] G. Giunta, R. Montella, G. Agrillo, G. Coviello, A GPGPU Transparent Virtualization 
Component for High Performance Computing Clouds, 16th International Euro-Par Conference, 
Ischia, Italia, August 31 - September 3, 2010. 

[25] Stephen Jones, Inside the Kepler Architecture, Supercomputing (SC12), Salt Lake City, 
USA, November 10-16, 2012. 

 


