Energy Concerns with HPC Systems and Applications

Roblex Nana
Mines Paris - PSL,
Centre de Recherche en Informatique (CRI)
Fontainebleau, France
roblex.nana_tchakoute@minesparis.psl.eu

Petr Dokladal
Mines Paris - PSL,
Centre de Morphologie Mathématique (CMM)
Fontainebeau, France
petr.dokladal@minesparis.psl.eu

ABSTRACT

For various reasons including those related to climate changes,
energy has become a critical concern in all relevant activities and
technical designs. For the specific case of computer activities, the
problem is exacerbated with the emergence and pervasiveness
of the so called intelligent devices. From the application side, we
point out the special topic of Artificial Intelligence, who clearly
needs an efficient computing support in order to succeed in its
purpose of being an ubiquitous assistant. There are mainly two
contexts where energy is one of the top priority concerns: em-
bedded computing and supercomputing. For the former, power
consumption is critical because the amount of energy that is
available for the devices is limited. For the latter, the heat dissi-
pated is a serious source of failure and the financial cost related
to energy is likely to be a significant part of the maintenance bud-
get. On a single computer, the problem is commonly considered
through the electrical power consumption. This paper, written in
the form of a survey, we depict the landscape of energy concerns
in computer activities, both from the hardware and the software
standpoints.
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1 INTRODUCTION

Manufacturers of high performance computing (HPC) systems
are striving to provide more and more potential computing power
by acting on the related hardware aspects like: number of cores,
vectors units, 3-operands units, accelerators, to name the main
ones. Performance is a high priority in servers and supercom-
puters beside storage capacity. In order to leverage the potential
power of HPC systems, efforts are made reach better implementa-
tions through cutting-edge programming and code optimisation
techniques [126]. The reality is that these performance-guided
activities do not explicitly consider the energy efficiency. En-
ergy saving has become one of the main challenges for the new
generations of servers and supercomputers.

Nowadays, the design of HPC systems considers power effi-
ciency: 21.1 MW for the 1.102 EFlop/s FRONTIER, 29.9 MW for the
442 PFlop/s Fucaku, and 2.94 MW for the 151.9 PFlop/s Lumr to
consider the top 3 machines of the most recent TOP500 list [37].
The associated electricity bill increasingly dominates the overall
costs related all the activities of HPC systems.

The problem is generally formulated as the need to reach a
good trade-off between time-to-solution and energy-to-solution.
Different approaches have emerged to solve this problem, which
can be summarised as follows: vendors work on power-efficient
processors and software developers on how to use them at the
best [30]. However, an effective solution is possible only by prop-
erly managing all layers of the system, from the software stack to
the cooling system [28]. Thus, we need power efficient software’s
as well as hardware integrated solutions and optimized devices.

The HPC market is growing significantly as the topic itself is
becoming popular and the need for computing speed a genuine



fact. The so-called "embedded HPC" is a new and emerging topic,
which consists on the development and use of highly parallel
micro-servers/embedded devices as mainframe computing sys-
tems [23]. These systems are increasingly used particularly in
the field of artificial intelligence (AI) to support both data col-
lection and model inference. The advantage of using embedded
devices is their energy efficiency for a competitive computing
performance compared to traditional CPUs. For machine/deep
learning inference, a new generation of Coral Dev Bord micro-
controllers can outperform traditional Intel Skylake server pro-
cessors by more than 20x times on both time performance and
energy efficiency[48]. This illustrate the energy efficiency and
the processing speed of embedded systems over CPUs for some
specifics applications. Thus, these low-power systems are widely
considered as good candidates when energy is the central con-
cern.

There are several contributions in the literature on energy
in HPC and embedded systems. These works range from the
definition of metrics [12, 105] to the optimization of energy
[72, 110, 128] through the development of profiling and energy
management tools[52, 120]. This work is carried out on the hard-
ware and software side of the systems as well as on the algorith-
mic level, targeting different types of system (embedded, CPU,
GPU, FPGA and hybrid).

The focus on energy in the context of computer systems is
also related to carbon footprint, which is a more general concern
currently in the spotlight. Indeed, energy can be turned into
carbon emission by multiplying it with the carbon intensity of the
energy supply[103]. If the power consumption of most hardware
components is well known or can be measured accurately, it not
the case with carbon emission, which has to (roughly) estimated
by specific means or using the aforementioned conversion.

In this paper, we survey a taxonomy of energy concerns in
computers systems. For each type of system (general purpose
computers, accelerators, embedded systems/micro-controllers and
modern supercomputers), we present stat-of-the-art (SOTA) ar-
chitectures with a focus on power management tools. Another
contribution of this work is a survey of SOTA energy/power
optimization techniques with an emphasis on Al applications
and a prospective analysis on all studied systems.

The remainder of this paper is structured as follows: Section
2 presents a review of existing surveys that address the topic
of energy management in HPC and embedded systems. Section
3 is about a quantitative overview of energy/power aspect in
computer, with a focus on the main energy/power and carbon
footprint metrics. Section 4 show an overview of most recent
energy aware hardware architecture for HPC and Al workloads.
Section 5 discuss about a taxonomy of energy concern in em-
bedded systems, accelerators, general purpose computers and
modern supercomputers, with a special focus on energy man-
agement and optimization tools. Section 6 discuss about cooling
system technologies from the energy consumption standpoint.
Section 7 present, comments and discusses some energy/power
optimization techniques from the literature. Section 8 present a
literature review for energy concern of Al applications in com-
puters system. Section 9 give a short prospective analysis of this
survey together with some technical recommendations. Finally,
Section 10 concludes the paper.
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2 RELATED REVIEW WORKS

Beloglazov et al. [13] discuss about the sources and issues of
high power/energy consumption, and provide a taxonomy key
aspects related to energy-efficient design of computing systems,
covering different levels including hardware, operating system,
virtualization and data center. The main aim of their taxonomy
is to guide future design and development activities.

A survey by Kocot et al. [72] investigates energy-aware sched-
uling methods used in modern HPC systems starting with the
problem definition and then tackling various goals associated
to this challenge, including a bi-objective approach that consid-
ers power and energy constraints. The work considers the stan-
dard types of HPC system (multicore CPU and GPU) together
with related energy-saving mechanisms based on dynamic volt-
age/frequency scaling (DVEFS), power capping, and other func-
tionalities. The work uses a collection of carefully selected algo-
rithms, classified by the programming paradigm (e.g. machine
learning or fuzzy logic).

Czarnul et al. [29] provides a state of the art on energy-aware
high-performance computing (tools, techniques and environments).
They identify and classify the main approaches by system/device
types, optimization metrics, and energy/power control methods.
The work describes energy management tools (benchmarking,
prediction, and simulation) and optimization approaches for stan-
dard devices (CPU/GPU/Hybrid) under various configurations
(clusters, grids, and clouds). The authors point out the need for
the unification of energy management interfaces for different
architectures. Their conclusion states that we need to develop
energy-aware methods for heterogeneous environments; indi-
cates the optimization goals worth investigating based on mini-
mizing the product of energy and computing time; and expresses
the need for the validation of energy management tools.

An overview on energy-saving efforts is provided by Maiterth
et al. [84], where they focused on energy/power-aware job sched-
uling and resource allocation as a major step towards more ef-
ficient systems. The paper considers nine large HPC centers
located over three continents and the answers to eight questions
from by their respective staff. Practical management procedures
including power capping, job killing, and virtual machines are
described. Moreover, the focus of the study is more engineering
oriented as it does not provide any formal or theoretical aspect
related to energy-aware scheduling.

A survey by Chaudhry et al. [25] addresses thermal-aware
scheduling and associated techniques for green data centers.
Their study focuses on the thermal and cooling aspects of tasks
scheduling, where a balanced heat distribution among the racks
of the server is the main objective. They indicate some metrics
to evaluate thermal awareness in green data centers. In addition,
they provide a thermal modeling together with effective solu-
tions to prevent from hard-to-cool phenomena such as hot spots.
They proposed two approaches: reactive, where the problem is
fixed upon occurrence; and proactive, where the goal is to pre-
vent the problem from occurring (e.g. using the thermal model
of the server room followed by a proper tasks assignment on the
compute nodes).

A technical report by Ramesh et al. [110] presents a taxon-
omy of power/energy concerns in embedded systems design. The
proposed taxonomy is derived from a systematic review of the
literature, where a categorization of the topics of interest is con-
structed. The authors considered a collection of 95 papers related



Energy Concerns with HPC Systems and Applications

to energy management from ACM, IEEE Xplore, and Springer-
Link databases. Their study focuses on energy dissipation and
power optimization from the standpoint of hardware devices and
that of support tools for energy profiling and optimization.

Many review works about energy concerns are generally spe-
cific to computer infrastructures (i.e., data-centers, embedded sys-
tems, supercomputer, etc.) for energy optimizations techniques,
tools, and measurement. In this work, we survey the energy con-
cern on HPC systems in a more general way considering all kind
of approaches for energy/power management as presented in the
taxonomy displayed in Figure 1

3 OVERVIEW OF ENERGY METRICS IN HPC

The matter of appropriate energy and performance metrics has
been investigated in several survey papers. However, since tech-
nology and associated features are evolving very rapidly, these
studies lack some aspects that we present in this paper together
with updated information related to news technologies.

There are various approaches to power measurement and dif-
ferent types of outputs. We can classify theses measurement
approaches into two groups: Out-of-band (e.g. power meters) and
in-band (e.g. RAPL counters). Out-of-band measurement is the
easiest approach to consider. It uses an external device to mea-
sure power consumption without a little to no interference in
the computational performance. In-band measurement requires
some technical information about the target hardware and can
access specific registers in a programmatic manner. Both types of
measurement can be enhanced with an application-level profil-
ing. However, it might be difficult to assess the type and detail of
the measurements that are needed to obtain satisfactory insights
from the energy profiling of the application. This is a major con-
cern with the Out-of-band measurement, which uses an external
device whose output data cannot be directly obtained within a
program.

3.1 Standard energy consumption metrics

In order to express the energy consumption at any level, we will
use the most basic formula that links energy to power and time.
The energy consumption E can be expressed as:

n
E = ZP,'(SI', (1)
i=0

where we assume a constant power P; for time period §;, with
So+91+- - -+, = T, where T is the overall time period considered.
One might consider an average power P of the P; over period T
and therefore write E = P x T. With this basic formula, we can
clearly see which are the two orthogonal levers at our disposal to
act on energy consumption. The variations of P and T are quite
opposite, indeed the energy optimization of an HPC system is
a matter of a good trade-off between the execution time and the
consumed power. The goal is to optimize one while keeping the
other at an acceptable level.

The reference unit of energy measurement according to the
international system of units is the Joule (J). In relation with a
time period, there is the watt-per-hour or watt-hour (Wh), with
the relation 1Wh = 3.6x10%J. In this study we will use both of
them, but in most of the cases we will refer to the Watt, which is
reference unit of power (i.e. energy consumed in a time period of
1 hour).

The first approach to get the energy consumption of a given
application is to directly measure the electrical power of the tar-
geted hardware through specific devices (out-of-band approach).
The second approach is seek an approximation of the energy
consumption using a prediction/estimation model (usually con-
sidered for performance). The first method is often used to assess
the accuracy of estimation approaches.

3.2 Energy metrics in supercomputers

Energy consumption is one of the major concerns when it comes
to the deployment of large-scale HPC infrastructures. This must
be taken into account at all levels (from hardware to software
tools) and raises new scientific and operational challenges.

In the top500 ranking of June 2022[37], the exascale perfor-
mance (both theoretical and sustained) has been reached with
the FRONTIER supercomputer [99]. The exascale was an impor-
tant milestone in the HPC roadmap, and this level of potential
performance is the current target of several high-end HPC in-
frastructures. The cost associated to the energy consumption
by large-scale supercomputers is noticeable and the associated
carbon footprint is becoming a serious concern. The Green500
[70] consider an evaluation of the FLOPS per Watt to rank super-
computers. Correlating the two metrics, we can state that the
challenge is to increase the performance per energy consumed
(FLOPS/Watt). Energy-efficient computing is a multi-dimensional
problem, especially in the extreme-scale computing. The elec-
tricity consumption, thus the associated bill, includes the power
due to machines operation and cooling system. A 2019 estimates
“A typical supercomputer consumes anywhere between 1 to 10
megawatts of power on average, which is equal to the electricity
needs of almost 10,000 homes” [19]. For instance, the electricity
bill paid by the RIKEN institute in 2020 for their (energy-efficient)
Fugaku supercomputer was nearly $60 millions [8]. Table 1 give
some illustrative data about the electricity bill of the top five
supercomputers of the november 2022 top500 ranking [37]. We
assume that the whole supercomputer is running continuously
during 1 hour, thus we get the estimate electricity cost (in dol-
lars, last column) by considering the cost per KWh that applies
in the geographical location of the computing center. We con-
sidered the electricity prices per country on September 2022 [44].

Machine | Peak Perf. Power | $/KWh | Total(K$)
FrRONTIER | 1.685 EFLOPS | 21.1MW 0.150 3.165
Fucaku 537.2 PFLOPS | 29.9MW 0.219 6.548
LUMI 428.7 PFLOPS | 6.02MW 0.198 1.192
LeoNARDO | 255.7 PFLOPS | 5.61MW 0.561 3.147
SumMmIT 200.8 PFLOPS | 10.1MW 0.150 1.515

Table 1: Electricity cost per hour for the top five supercom-
puters.

The so-called thermal design power (TDP), also called thermal
design point, is the maximum amount of generated heat (by a
computer chip or component) that the cooling system is designed
to dissipate. The power rating (highest power input allowed) for a
microprocessor is generally 1.5 times the TDP [105]. The purpose
of the TDP is to provide system designers with a power target so
as to guide the selection of a convenient thermal solution. Under a
steady workload, the TDP is the maximum power consumption of
the processors. However, during the turbo mechanism or certain
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Simples metrics : watt,
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Advanced metrics:
FLOPS/watt,
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Figure 1: Taxonomy of power/energy management solutions with related approaches and tools.

types of workload such as vectors instructions, it can sometimes
exceed the maximum TDP.

The so-called Average CPU Power (ACP), a concept defined by
AMD for Opteron processors, is the average dissipated power of
a processor while running a defined set of benchmarks (Trans-
action Processing Performance Council (TPC Benchmark*-C),
SPECcpu*2006, SPECjbb*2005, and STREAM) [121]. AMD indi-
cated that these measurements to determine the ACP value are
not to be considered for every processor, but only for some par-
ticular ones selected by its manufacturing units [9].

From thermal standpoint, the processor TDP specification is a
critical value because any thermal solution should dissipate at
the level of that rated indication. Intel and AMD both agree on
this point. If a given processor design is based on the ACP, then
it might be undersized and out of its thermal specifications. For
servers the main concern is not on how much power a specific
component dissipates, but instead the power of the entire server
when running a given workload. The corresponding measure-
ment can be easily made following and out-to-band approach
with a power meter on the input cord(s).

SWaP (Space, Wattage and Performance) [33] is an objective
three-dimensional metric that provides a more comprehensive
and realistic way to evaluate servers. It is calculated considering
performance, power as indicated by equation 2 that follows:

Per formance

SWaP )

"~ Space * Power’
where Performance and Power is measured by any convenient
benchmarks, and Space is related to the size of the computer.

The so-called Power usage effectiveness (PUE)[12] is a metric
used to determine the energy efficiency of a data center. It is
determined by dividing the total amount of incoming power by
the consumed power as expressed by formula 3.

_ Total_Facility_Energy Non_IT_Facility_Energy

PUE

" IT_Equipment_Energy IT_Equipment_Energy

(3)

According to the "Uptime Institute Annual Global Data Center Sur-
vey 2021" [31], PUE and power consumption are among the top
tracked sustainability metrics. But in 2022, key findings reported
in the Uptime Institute Global Data Center Survey 2022 [66] indi-
cated the requirement of additional metrics to supplement PUE
for future efficiency gains, which should focus on IT power. A
similar benchmarking standard considered by the Green Grid
is DCIE (Data Center Infrastructure Efficiency), which is just the
inverse of PUE. Both metrics apply to a more global level, thus
they do not capture the consumption specific to the comput-
ing activities. Indeed, information technology (IT) equipment
include computing units and all associated peripherals. Never-
theless, having such a macroscopic information makes sense as
all considered facilities are related to the computing activities.
A survey by Jin et al. [69] presents the state-of-the-art on
green data center techniques including energy efficiency, resource
management, thermal control and green metrics, with a detailed
comparison among them and key challenges for future research.

3.3 From energy to Carbon footprint

Climate change currently stands as a critical concern because
of its significant impact on ecosystems and livelihoods across
the world. It’s a clear fact that carbon dioxide emissions are
the primary driver of global climate change. According to recent
estimates, the total CO, emissions of the information and commu-
nications technology (ICT) sector account for around 2.1%-3.9%
of global CO5 emissions[39]. Therefore, estimating and reducing
the carbon footprint in ICT is worth all related efforts.

The typical way for carbon footprint estimate of IT infrastruc-
ture activities is to derivative it from power consumption. The
paper by Patterson et al [103] provides a valuable study of the
carbon footprint of computing workloads. They stated that CO,
equivalent emissions (COze) accounts for carbon dioxide and all
the other greenhouse gasses as well like methane and nitrous
oxide for instance. This equivalent emission can be calculated
from the electric power by multiplying it with the carbon intensity
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of the energy supply as expressed through formula (4) [103]:
COze = Wh % (COze per Wh) 4)

Carbon intensity (COze per Wh) is the amount of carbon diox-
ide (COze) that is released to produce a watt-hour of electricity.
The average data-center carbon emissions in 2020 was 0.429
tCOze (ton of carbon dioxide equivalent emissions) per MWh
(Megawatt hour), but the gross tCOze per MWh can be 5x lower
in some specific data-centers [103]. Table 2 is provided as an il-
lustration of the carbon footprint for top ranked supercomputers.
We used formula (4) and an estimation of the carbon intensity
from 2022 data [100]. We clearly see that the floating-point per-
formance and the necessary (COze) are not directly correlated,
the hardware profile of the machines is a key factor.

Machine | Peak Perf. Power | Kg(CO,)/KWh | CO,(kg$)
FRONTIER 1.685 EFLOPS | 21.1MW 0.379 7 997
Fucaku 537.2 PFLOPS | 29.9MW 0.479 14 322
LUMI 428.7 PFLOPS | 6.02MW 0.132 795
LeoNARDO | 255.7 PFLOPS | 5.61IMW 0.372 2087
SUMMIT 200.8 PFLOPS | 10.1MW 0.379 3 828

Table 2: CO; per hour for the top five supercomputers.

4 HARDWARE ARCHITECTURE FROM THE
ENERGY STANDPOINT

4.1 Accelerators

4.1.1 GPU. GPUs are specialized devices designed for efficient
graphics rendering and image processing. Their parallel structure
makes them more efficient than traditional CPUs for algorithms
that process large blocks of data in parallel. Nowadays, GPUs
stand as the reference accelerator in the HPC landscape. In addi-
tion to being now designed as general purpose units, GPUs have
a top consideration when it comes to energy efficient in HPC
[56]. From the absolute standpoint, modern GPUs consume a
significant amount of power (from 50-600W or even more). How-
ever, because of their noteworthy processing speed, they show
better performance-per-watt than standard CPUs for specific
workloads.

AMD Instinct MI250X was ranked world’s fastest HPC ac-
celerator in 2022[3]. This GPU has a (double-precision) peak
performance of 47.9 TFLOPS and a peak power between 500 and
560 TDP. A combination with cutting-edge processors yield very
powerful HPC systems, like the (AMD EPYC CPU, AMD Instinct
MI250X) CPU-GPU pairing of the FRONTIER (Exascale) super-
computer and other top ranked machines from the top500 list
of November 2022[37]. NVIDIA H100 Tensor Core GPU [96] is
the response from NVIDIA about this innovation from AMD as
competitive material with 700W TDP in maximum configura-
tion. Intel Launched Intel Data Center GPU Max Series project in
2022 with PONTE VEccHIO as the first competitive product for
data center GPU market [63] with 600W TDP. A comparative
view in terms of flops performance and power supply of the major
accelerators is provided in table 3.

4.1.2 TPU. With the high computing power required for cutting-
edge Al domain-specific architectures for Neural Network com-
putations have emerged, like the Tensor Processing Unit (TPU), a
Deep Neural Network (DNN) accelerator from Google. An indi-
vidual Edge TPU can perform 4 trillion operations per second (4

TFLOPS) with only 2 watts of power. The latest TPU (version 4)
has an average TDP of 192W. For illustration, the Edge TPU can
execute state-of-the-art mobile vision models such as MobileNet
V2 at almost 400 frames per second in a power efficient manner
[46]. Pandey P. et al [102] parameterized the extreme hardware
under-utilization in a TPU systolic array and proposed UPTPU:
an intelligent data-flow adaptive power-gating paradigm that
yields a improvement of the TPU energy efficiency by factor
3.5 to 6.5 on different input batch sizes. This ultra low power
devices is nowadays integrated as an accelerator into microcon-
trollers (single-board unit), as we can see with Coral Dev Board
for instance.

4.1.3 FPGA. Field Programmable Gate Arrays (FPGAs) are in-
tegrated circuits with ability to be reconfigured to implement a
specific processing at the hardware level. Initially applicable to
very specific domains, FPGAs has extended so as to now stand as
a important components of servers and supercomputers, as well
as edge computing systems[15]. However, their energy efficiency
is still an important concern, with no easy or standard ways
for hardware/software power management. Hosseinabady and
Nunez-Yanez [55] investigate the use of FPGAs in an embedded
system for energy saving. They study the energy efficiency of
a hybrid FPGA-CPU device that can switch between hardware
and software on periodic tasks. In addition, they successfully
applied the voltage and frequency scaling (VFS) to reduce the
energy consumption. Moreover, they showed that in some cases,
if the task’s period is higher than a specific threshold a reduction
of the energy consumption cannot be obtained on the FPGA,
hence the effectiveness of a software support for energy saving.
Experimental results show up to 48% energy reduction by apply-
ing the proposed techniques at runtime on thirteen individual
tasks. As previously said, the major accelerator in the HPC land-
scape remains the GPU, however the FPGA is becoming a serious
candidate.

4.2 Embedded systems: Microcontrollers

Due to their small size and single-chip configuration (thus at
the expense of processing power, memory and storage), micro-
controllers have a little energy consumption while keeping a
certain level of computing efficiency. Much more energy is re-
quired to power a GPUs and standard CPUs, which yields some
limitations and constraints in their usage. Micro-controllers are
typically not wired into main power, they instead rely on batter-
ies or residual energy. For example, a micro-controller can run on
a single coin battery for weeks or even months. However, having
alow power system does not yield lower energy consumption by
itself. Indeed, it is important to optimize the software, not just
in terms of functionality or processing efficiency, but also with
respect to energy efficiency. We now describe some of the major
devices of embedded computing.

4.2.1 Arduino. When it comes to microcontrollers and embed-
ded systems, one of the first candidate that pops is Arduino. Ar-
duino is an open-source electronics platform based on easy-to-use
hardware and software for ultra low power chips, which con-
sumes less than a single watt of nominal power. The Arduino
Portenta H7 [7] is currently the most powerful IoT Cloud com-
patible boards of the Arduino series. Arduino can be used to
connect devices, visualize data, control and share projects online.
Beginners and advanced users can meet their specific needs from



Roblex Nana, et al.

Name RAM (GB) | core frequency | TDP (w) Peak TOPS peak performance/

(GHz) TFLOPS(fp32) | watt (INT8)
Tesla A100 SXM4 80 141 400 312(bf16)/624(int8) | 19.5 1.56 TOPS/W
Tesla H100 SXM5 80 1.98 700 1000(bf16)/2000(int8) | 60 3.33 TOPS/W
AMD Instinct MI250X 128 1.7 560 383 (bf16 or int8) 95.7 0.68 TOPS/W
Intel Ponte Vecchio 128 1.6 600 720(bf16)/1440(int8) | 45 2.40 TOPS/W
Google TPU v4 32 1.05 192 (idle) 275 (bf16 or int8) / 1.43 TOPS/W

Table 3: SOTA accelerators systems characteristics

its wide range of features and possibilities. However, even with
Portenta H7, Arduino is not powerful enough to handle HPC
workloads in the context of embedded systems as compared with
others microcontrollers (see Table 4).

4.2.2 Raspberry Pi. While Arduino is an electronic board with
a simple microcontroller, Raspberry Pi is a full-fledged computer.
Unlike Arduino, Raspberry Pi has its own operating system, thus
it can carry out more complex operations (e.g. robot control and
weather monitoring, to name these two). The Raspberry Pi 4 Model
B [112] is the latest model of the Raspberry Pi microcontrollers
series. It offers a noteworthy increase in processing speed, multi-
media performance, memory and connectivity over the previous
generation (Raspberry Pi 3 Model B+), while keeping full compat-
ibility with earlier versions and same level of power consumption.
The Model B offers a level of performance comparable to that
of entry-level x86 PC systems but with the advantage of energy
efficiency as it has a maximum nominal power of 10W.

4.2.3 Intel NCS2. Intel Neural Compute Stick 2 (Intel NCS2)[64]
is a plug-and-play Development Kit for AI Inference. NCS2 is
based on an Intel Vision Processing Unit(VPU) chip named Movid-
ius X. Movidius provides its Neural Compute Stick (i.e. Fathom)
to bring a basic-level deep learning capabilities into embedded
devices. It can be used to develop, fine-tune, and deploy convolu-
tional neural networks (CNNs) on low-power applications that
require real-time inference. It supports heterogeneous execution
across computer vision accelerators (CPU, GPU, VPU, and FPGA)
using a unified APL Its so-called Vision Processing Unit (VPU)
includes vision accelerators, a Neural Compute Engine, imag-
ing accelerators, and 16 SHAVE vector processors paired with
a CPU in one heterogeneous package. The combination of the
aforementioned units provides a total of up to 4 TFLOPS with
1.5W of power [106]. However, Intel is discontinuing this product
and its technical support will continue until June 30, 2023, while
warranty support will continue until June 30, 2024[64].

4.2.4 Nvidia Jetson. The Jetson Nano Developer Kit [95] is the
most popular board from Nvidia Jetson series. It delivers a note-

worthy processing capability to efficiently support high-performance

Al at low power and cost. The developer kit can be powered by
micro-USB and comes with extensive I/Os. This makes it simple
for developers to connect a diverse set of new sensors to enable a
variety of applications at a little power of 5 watts. The Jetson AGX
Orin Developer Kit [97] is currently the most powerful board
from this series, with up to 275 TOPS for running the NVIDIA Al
software stack. It enables to create advanced robotics and edge
Al applications. But this performance incurs a higher cost with
currently more than 2000$ for 60W TDP.

4.2.5 Coral Dev Board. The Coral Dev Board[47] is a single-
board computer with a removable system-on-module (SOM) that
contains eMMC, SOC, wireless radios, and Google’s Edge TPU.

It’s perfect for IoT devices and other embedded systems that
demand fast on-device ML inferencing. Coral dev is also the
most efficient out of all the microcontrollers we have found.
With on board TPU, it is capable of performing 4 tera-operations
per second (TOPS), using 0.5 watts for each TOPS (2 TOPS per
watt)[48]. The USB version can be connect to any system running
Debian Linux (including Raspberry Pi), macOS, or Windows 10.
Coral Dev is very fast but, with bad tech support, faulty units
and seems like a very common problem.

4.3 General Purpose Processors

4.3.1 x86 based processors. x86 is a family of CISC instruction
set architectures, initially developed by Intel from Intel 8086
microprocessor and its 8088 variant. It was introduced in 1978
as a fully 16-bit extension of Intel’s 8-bit 8080 microprocessor,
with memory segmentation as a solution for addressing more
memory than can be covered by a plain 16-bit address. Embedded
systems and general-purpose computers used x86 chips before
the IBM Personal Computer in 1981. Nowadays, most desktop,
workstation, laptop and server computers are based on the x86
architecture family, while mobile categories such as smartphones
or tablets are dominated by ARM. The fastest supercomputer in
the TOP500 list for November 2022 (FRONTIER) is built with AMD
Epyc CPUs that are based on the x86 ISA. The market of CPUs in
the HPC landscape and data centers is still dominated today by
x86 CPUs.

AMD claim that its EPYC processors power the most energy-
efficient x86 servers, delivering exceptional performance with
lower energy consumption [4]. AMD EPYC 9654 servers shall
use up to 29% less annual power than Intel Xeon Platinum 8490H
servers at the same performance, while helping reduce capital
expenditure up to 46% [4]. Note that these two CPU models
require respectively 350W and 360W for Intel and AMD CPUs
respectively.

4.3.2  ARM based processors. Energy saving has become one of
the main challenges for new generation servers and supercom-
puters. Many manufacturers of HPC systems consider low-power
ARM components that are also present today in the vast majority
of embedded or mobile systems. Indeed, the particularity of ARM
components is their low energy consumption with a competitive
processing performance as Intel and AMD x86 architectures. Sev-
eral international collaborative projects like the Japanese Post-K,
the European Mont-Blanc, or the UK’s GW4/EPSRC, announced
the adoption of ARM technology for their high-performance com-
puting (HPC) systems [85]. On November 2018, for the first time,
an ARM-based system was listed in the Top500 ranking. It was
the Astra[136] supercomputer powered by Marvell’s ThunderX2
ARM CPU and hosted at the Sandia National Laboratories (USA).
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Name memory(GB) | core fre- | TDP (w) Peak TOPS peak TFLOPS(fp32) | performance/watt
quency (GHz)
Raspberry Pi 4B 8 1.5 10 / 0.135 2.02 GFLOPS/W
Jetson Nano 4 1.43 10 0.472(int8) 0.236 0.047 TOPS/W
Jetson AGX Orin 64 2.0 60 275(int8) 5.3 4.58 TOPS/W
Arduino Portenta H7 0.008 0.48 1.15 / / /
The Coral Dev Board 4 1.5 0.65 4(int8) / 2 TOPS/W
Intel NCS2 3 0.7 15 4(int8) / 2.66 TOPS/W
Table 4: Characteristics of selected state of the art embedded systems
Name memory(GB) | core frequency | TDP (w) Peak TOPS Peak GFLOPS | performance/watt
(GHz) (fp64)
Intel Platinum 8490H 4000 1.9 350 / 3 648 10.42 GFLOPS/W
AMD EPYC 9654 6000 2.4 360 7763(int8) 3 686 10.23 GFLOPS/W
Fujutsu A64FX 32 2.6 150 3.4(int8) 3 400 22.66 GFLOPS/W
Marvell ThunderX2 512 2.2 180 / 563 3.12 GFLOPS/W

Table 5: SOTA General purpose computers characteristics

5 ENERGY MANAGEMENT TOOLS

5.1 Energy tools for GPUs

NVIDIA-SMI (NVIDIA System Management Interface) [94] is a
command line utility for the management and monitoring of
NVIDIA GPU devices that is based on the NVIDIA Management
Library (NVML). The tool can be used to set the power range
(max and min, in Watt) of the execution of a given application. Its
GPU Operation Mode (GOM) allows to reduce the power usage
and optimize the GPU throughput by disabling some features
accordingly. It also implements a power scaling algorithm to
dynamically reduce the clock frequency when the GPU is con-
suming too much power.

5.2 Energy tools for CPUs

- Intel RAPL[65](Running Average Power Limit Interface) is an
interface for reporting the (accumulated) energy consumption
of various system-on-chip (SoC). The RAPL’s energy reporting
feature has been available on many generations of Intel SoC prod-
ucts. Intel processors utilize this energy information for internal
SoC management purposes such as the control of power limits
in association with the Turbo Boost power limit settings. Energy
information from the RAPL interface gets updated every 1 ms,
which is several orders of magnitude slower than what physical
side channel probing could achieve. RAPL measurements ignore
a large part of the power consumption of servers because they
focus on CPU and RAM. Some experiments on Intel processor
from Grid5000 [51] show that it just represent 42% of the overall
servers consumption [5].

- AMD RAPL counters : Concerning Zen architecture, AMD
replaced APM (Application Power Management) with RAPL. The
implementation is similar to the corresponding Intel’s RAPL, but
uses different control registers. While Intel typically provides mul-
tiple domains and the option to limit power consumption over var-
ious time frames, AMD only considers registers for memory reads
and core power consumption. However, the latter is available
with a per-core spatial resolution, while a per-package applies
for Intel’s core domain. Schone et al. [118] highlighted various
energy efficiency aspects of the AMD Zen 2 micro-architecture in

order to facilitate system comprehension and optimization. Key
findings include qualitative and quantitative descriptions regard-
ing core frequency transition delays, workload-based frequency
limitations, and effects of I/O die P-states on memory performance.
The authors made a comparative study with some high-end Intel
architectures (i.e., Cascade Lake, Skylake, Haswell) for power
efficiency and provided details on power measurements accuracy
on both architectures. The work shows that AMD RAPL is unsuit-
able to optimize the overall energy consumption. Their approach
failed on reflecting the influence of the operands, which can also
be seen as a benefit when it comes to side-channel attacks that
are based on power measurement.

- For ThunderX2[86] chips, there is no RAPL counters but
there are other harware specific on-chip sensors. These sensors
are not yet supported by common libraries like PAPI[17], perf-
tools[38] for instance. However, Marvell[86] has provided an tool
named tx2mon [87], which is based on the Linux kernel driver
tx2mon_kmod to provide access to specific system data and allow
to configure the way to measure energy.

- Model-Specific Register (MSR) is any of the various control
registers in the x86 architecture used for debugging, program ex-
ecution tracing, computer performance monitoring, and toggling
certain CPU features.

- ACPI (Advanced Configuration and Power Interface)[130] is
an open standard that the operating system can use to discover
and configure the components of the computer, to perform power
management, auto configuration, and status monitoring. ACPI
defines the performance states, designated by P-States. P-States
correspond to different performance levels that apply while the
processor is actively executing instructions according to energy
saving and performance trade-off scenarios. Each system manu-
facturer decides its way to implement this specification standard
to save energy in the system. For example, Intel CPUs, regarding
Haswell architecture, provides voltage regulators per core, thus
each core has its own P-State.

- Device Tree (DT)[80]: While ACPI was historically created for
x86 platforms, the ARM ecosystem developed "Device Tree" (DT)
to describe the same information for ARM-based devices. Thus,
ACPI and DT overlap in that they both provide mechanisms for
enumerating devices and attaching additional configuration data
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Name type Objective

Techniques Portability

NVML(NVIDIA-MSI)[94] | Software | power management

Dynamic Power Man- | Linux with Nvidia GPU de-
agement, Power capping, | vices; never tested it on Win-
Sampling measurement dows

Table 6: SOTA accelerators energy/power management tools

to devices (which can be used by higher layers of software). The
biggest difference between DT and ACPI is that DT is effectively
a structured mechanism for passing arbitrary data, while ACPI
provides standardised data.

- PAPI (Performance API) [17] library is a platform indepen-
dent tool which provides developers with an interface and method-
ology for gathering performance-related hardware data. The ba-
sic principle is to allow developers to see the relation between
the software performance and corresponding processor events.
McCraw et al. [88] extended PAPI to measure and report energy
and power values even on complex architectures.

- Intel Power Gadget [61] is one of the most easy-to-use energy
profiler. It provides a graphical user interface with a few plots
showing CPU and DRAM utilisation (%), cores frequency (GHz),
temperature (°C), and power consumption (W). The total energy
consumption of the CPU and DRAM written into files (i.e. Log
files). When installing Intel Power Gadget, its command-line
interface (named PowerLog) is also installed.

- Powerstat [26] is an easy-to-use tool to measure energy
consumption on Linux. Intel Power Gadget and PowerLog are
not compatible for Linux system, so Powerstat was developed
similarly to the previous tools. Powerstat is just another wrapper
around an Intel library RAPL. However, it provides a simple
interface for a command-line usage.

- PowerTOP[62] is a Linux tool used to diagnose issues with
power consumption and power management. In addition to being
a diagnostic tool, PowerTOP also has an interactive mode that
can be used to handle various power management settings in
case the direct mode is restricted by the OS. Its main advantage is
the ability to estimate the energy consumption of the considered
machine. It provides an interactive mode to fine-tune power
management settings in Linux system.

- Perf tools[38]: A very quick and easy way to obtain the
energy consumption of a program in a Linux environment, is
through Perf. It is a command-line tool that offers a wrapper to
Intel’s RAPL. It facilitates the collection of energy measurements
of the components of a computer and associated devices.

- Another quick way of getting energy and power measure-
ments for Intel processors is through Likwid[129]. Likwid uses
the RAPL interface, developed by Intel, to fetch energy and power
measurements from different types of CPU. Compared to Perf,
Likwid does not offer an option to run a given test several times.
However, it provides power estimation in addition to energy mea-
surement. Moreover, Likwid offers other options such as thread’s
temperature monitoring.

- PyJoules[59] is a software toolkit written in Python to mea-
sure the energy footprint of a given host machine. It monitors
the energy consumed by a specific device of the host machine. It
works ionly with intel CPUs, RAM (for intel server architectures),
intel integrated GPUs and nvidia GPUs.

5.3 Energy tools for microcontrollers

- EEMBC CoreMark-Pro [36] is a benchmark that aims at becom-
ing the industry standard for embedded platforms. It contains five
(resp. four) prevalent integer (resp. floating-point) workloads. The
workloads in CoreMark-Pro represent a wide variety of perfor-
mance characteristics, memory utilization, and instruction-level
parallelism, highlighting the strengths or and weaknesses of the
target processor in term of performance and energy efficiency.

- EEMBC ULPBench [35] is a benchmark whose the goal is to
overload a given processor in order to help determining the max-
imal amount of energy consumed. The benchmark consists of a
number of mathematical and sorting operations. The STMicro-
electronics PowerShield provides the backbone of the framework
for probing an embedded system energy measurement.

- Dr. Wattson [131] is an Energy Monitoring Module for high
quality energy monitoring and measurements for microcontrollers
boards. It is coupled with easy to use Arduino and Python libraries
to provide quality AC energy data like RMS Current, RMS Voltage,
Power Factor, Line Frequency, Active/Apparent Power, with just a
few of lines of code.

- PSoC (Programmable System on Chip) 5LP[68] is a data ac-
quisition (DAQ) system for measuring and analyzing the power
consumption of microcontrollers. DAQ system consists of a cur-
rent measurement circuit using potentiostat technique (i.e, apply
constant voltage during experiment). The DAQ device is based on
system on chip PSoC 5LP and Python program for the analysis,
storage and visualization of measured data. Implemented DAQ
device is connected with a computer through a USB port and
tested with developed Python program.

- N3 profiler [34] is a power consumption monitoring tool to
detect anomalies in power consumption for ARM-Based embed-
ded systems at the level of the components. The authors used
NARX (Nonlinear AutoRegressive eXogenous) [16] neural net-
works model as estimator to monitor energy/power for profiling
and diagnosis purposes. N* improves upon the accuracy reported
in the literature while maintaining low power and computational
overhead. Experimentation was done on a smartphone consid-
ered as an embedded device.

Comment : For a more accurate power measurement on
micro-controller board, the following actions can be considered:
disable HDMI and LEDs if present; minimize accessories usage
(a connected keyboard for instance); be selective with Software
(different programs running) and disable WiFi. Different system
commands can be used depending on the micro-controller to
disable the aforementioned features.

5.4 Energy tools for Modern HPC systems

- HDEEM (High Definition Energy Efficiency Monitoring)[52] is
an FPGA-based system on-chip that is intended to equip a com-
pute node for its power measurement. The aim is to aggregate at
high frequency (1 kHz) the measurements made by watt-metrics
probes distributed among the components of the compute node.
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Name Type Objective Techniques Portability
RAPL counters[65] hardware power management Dynamic Power Man- | x86 CPU
agement, Power capping,
Sampling measurement
ACPI[130] specification | power management Dynamic Power Manage- | x86 CPU
ment, Power capping
DT[80] specification | power management Dynamic Power Manage- | ARM CPU
ment, Power capping
Perf tools[38] software performance and energy | interface to hardware | Linux with Intel devices
management counters for energy
PAPI[88] software performance and energy | interface to hardware | All Linux systems
management interface counters
Likwid-powermeter[129] software power profiling query RAPL counters Linux devices with Intel
processor
PowerTOP[62] software energy monitoring query Intel RAPL Linux with AMD or Intel
devices
PyJoules[59] software energy monitoring query RAPL and Nvidia | Linux with AMD, Nvidia
SMI interfaces or Intel devices
Powerstat[26] software measure energy con- | query Intel RAPL Linux on Intel PCs
sumption
Power Gadget and PowerLog[61] software energy/power and tem- | query Intel RAPL Mac or Windows on Intel
perature monitoring PCs
tx2mon[87] software energy/power and tem- | query hardware counters | Marvell ThunderX2
perature monitoring

Table 7: SOTA General purpose computers tools for energy/power management

energy consumption

workload

Name Type Objective Technique Portability
EEMBC CoreMark[35] software system benchmark for | stress CPU with specific | 8 to 64-bit microcon-
energy consumption workload trollers
EEMBC ULPMark[35] software system benchmark for | stress CPU with specific | 8,16 and 32-bit microcon-

trollers

PSoC 5LP[68]

software and hardware

system benchmark for
energy consumption

SoC Module based on
PSoC and python pro-

all microcontrollers

software optimization

tion

gram
Dr. Wattson [131] software and hardware | Energy Monitoring SoC Module based on Ar- | Arduino, Raspberry
duino and python pro- | and simillars microcon-
gram trollers
N3[34] software Monitoring, diagnosis, | machine learning predic- | embedded systems

Table 8: SOTA Embedded systems energy/power management tools.

The samples associated to the last 7 hours of execution can be
stored in a local memory of HDEEM for direct accesses through
a programming interface in C language and/or through reads
from report files.

- Similar to HDEEM, WattProf[111] is a system-on-chip based
on an FPGA that can be connected via a PCle interface to a
compute node. WattProf comes with dedicated wattmetric probes
that can be plugged on the PCle interface of the targeted hardware
components and also on the connectors for the DRAM. WattProf
includes a memory for storing samples of energy consumption
measurements, and an API to access those samples.

- DiG (Dwarf in a Giant) [78], is another system on-chip based
on an Arduino 5. Unlike HDEEM and WattProf, DiG connects to
the power supply of the computer and thus captures its overall
energy consumption rather than that of individual components.
The Arduino board is used to process the energy consumption
data, as well as to send them out through the network of the

supercomputer. It might be more convenient or efficient to dedi-
cate an individual unit to the management of the measurements
coming from the participating compute nodes. That unit will
thus serve as the provider of energy measurements to the user.
In addition, DiG also allows for accurate and high frequency
sampling, while remaining a low cost system-on-chip for HPC.
- PowerPack [42] was the first tool to isolate the power con-
sumption of common devices including disks, memory, NICs, and
CPUwithin a given machine and correlate the corresponding mea-
surements with the main subroutines of the applications being
profiled. The framework support multi-core and multiprocessor-
based nodes and provides in-depth analyses of the energy con-
sumption of parallel applications. These analyses include the
impacts of multiprocessing at the level of the chip on energy
efficiency. The authors used the framework to study the power
dynamics and energy efficiencies of DVFS techniques on clusters,



and the experiments showed that DVFS scheduling can intel-
ligently enhance system energy efficiency while maintaining
processing performance. They claim that their methodology as
described in their work can be extended to other architectures
and measurement devices. For instance, one can directly use the
power sensors integrated in emergent computer systems for a
more convenient power measurement.

- BDPO(Bull Dynamic Power Optimizer)[123] is a dynamic
reconfiguration tool that runs as a daemon behind a given HPC
application and adapts the clock frequency of the CPUs accord-
ing to the workload. It has the particularity of being completely
agnostic to the considered application, as well as to the platform,
while not requiring any configuration from the user. The authors
of the tool experimentally got that the use of BDPO reduces the
energy consumed by the execution of NEMO and HPCG applica-
tions by about 15%, while maintaining the associated overhead
below 4% [123].

- Phase-TA [123] is a tool for analysing the profiles of iterative
HPC applications, especially those produced by Bull Dynamic
Power Optimizer (BDPO) [123] (see the previous paragraph). It
detects locally periodic behaviours and try to characterise them
by constructing patterns corresponding to the associated peri-
odicities. The authors experimentally showed that the patterns
constructed by Phase-TA are relevant representations of the con-
sidered periodicities, which seem to dominate the execution time.
The observed performance of Phase-TA allows to consider the
use of Phase-TA during the execution of an HPC application for
its energy monitoring,.

- PMAC (Power Monitoring and Controlling) Tool [21] is a
web-based power monitoring and controlling tool for energy
optimization of HPC applications. PMAC reports the power con-
sumption of the sofatwer as well as for the hardware in real-time.
It allows to manages power based on application’s profile and
DVEFS mechanism. The specificity of the tool is that it can be
used as an energy profiling as well as an energy optimizer. In
the latter case, the tool uses its own profile report to guide the
power optimization strategy. Experimental results have shown
an energy saving of 12 -15% when using P-MAC. P-MAC uses
CMAF (C-DAC Multi-Agent Framework) for the transmission
and execution of control policies.

- EAR (Energy Aware Runtime) [77] is an energy management
framework for energy measurement, energy management and
energy optimization. EAR supports standard CPUs as well as
(NVIDIA) GPUs. It is constantly being enhanced to support other
and upcoming technologies as well. The optimization of the
energy consumption of an HCP cluster is done at two levels: the
compute node level, which is provided by the EAR library and the
system level for power caping using DVFS techniques.

- EERT (Energy Aware Rescheduling Tool)[20] is another en-
ergy management tool that act on the internal scheduling of HPC
applications in order to the reduce energy consumption through
maximizing the CPU utilization and switching off idle nodes. The
benefit is more noticeable when there is a important imbalance
in the distribution of workloads over the nodes. EERT seamleslly
uses the distributed multithreaded check-pointing (DMTCP) mech-
anism for check-pointing. Experimental results provided by the
authors show 15% energy saving when using EERT.

- FIRESTARTER [120], is a handy utility that aims at creating
near-peak power consumption on standard compute nodes. It
can be used for tests of cooling and power infrastructures, system
stability test, or as a maximum power consumption baseline for
application energy efficiency studies. FIRESTARTER is currently
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only available for the Linux operating system and has supports
for Intel architectures (Nehalem, Westmere, Sandy Bridge, Ivy
Bridge, Haswell, Broadwell, Skylake, Knights Landing), AMD
family 15h and 17h (Zen, Zen+, Zen 2) processors, and NVIDIA
GPUs. The tools stresses the most important power consumer parts
of compute nodes: CPU (cores + memory related components
such as the caches), GPUs, and main memory and report some
metrics that include power consumption.

- lo2s [57] is a lightweight performance monitoring tool. The
tool collects performance and energy data w.r.t various metric
(i.e., perf counters, kernel trace-points, model specific registers,
and custom metric data provided by plugins). These trace data
are stored in the Open Trace Format 2 (OTF2) that can be used for
offline analysis using tools like Vampir [71]. Ilsche et al.[58] inves-
tigated improvements of lo2s by combining a detailed recording
of system events with information from a high-resolution power
measurement in the process of recording the scheduling of appli-
cations and C-state transitions.

- READEX [98] is a tool suite that supports users to improve
the energy-efficiency of their HPC applications. It enables them to
exploit the dynamic behaviour of their applications by adjusting
the system to the actual resource requirements and thus improves
energy-efficiency and performance. It uses a multi-agent based
approach to identify runtime situations and to determine optimal
system configurations. The tools also provides insights for the
specification of domain knowledge to improve the automatic tun-
ing impact. The result of the analysis step guides runtime tuning.
Figure 2 provides an overview of READEX working diagram.

*

\ Instrumented Application l
] [ Score-P l [
el ¥
\ Design Time ‘
Tuning Model
PTF READEX Runtime Library (RRL)

Figure 2: READEX working diagram

- MERIC [119, 134] is Lightweight C/C++ library (with an inter-
face for Fortran applications) that measures energy consumption
and timings of annotated regions inside a user application. The
MERIC library evaluates application behavior in terms of re-
source consumption and runtime parameters including Dynamic
Voltage and Frequency Scaling (DVFS) and Uncore Frequency Scal-
ing (UFS). It performs dynamic application tuning following the
READEX approach. The library was originally developed for Intel
x86 systems, but additional supports for AMD, IBM and selected
ARM systems chips was added. It also supports HDEEM and DiG
hardware tools for energy measurement. A tool called RADAR
VISUALIZER [134] for visualization of the analyzed application
behavior in different system configurations was proposed to ana-
lyze MERIC results.
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Name Type Objective Technique Portability
WattProf[111] hardware | energy/power measurement system on-chip based power | all server node
monitoring board
HDEEM][52] hardware | power measurement system on-chip based power | all server node
monitoring board
DiG[738] hardware | energy monitoring system on-chip based power | all server node
monitoring board
PowerPack[42] software | energy/power measurement isolate power consumption of | Linux systems
devices in measurement
EERT[20] software | power management dynamic rescheduling, core us- | Linux HPC systems
age maximization
Phase-TA[123] software | energy profiling analysing the profiles of HPC | Linux systems
applications
PMAC[21] software | power management DPM and DVEFS techniques; | Linux systems
web based monitoring
BDPO[123] software | power optimization DEFS on computing cores dur- | Linux x86 systems
ing workloads execution
lo2s[57] software | performance and energy pro- | Sample hardware counters | Linux x86 systems
filing events
EAR[77] software | energy management DPM techniques, power cap- | Linux with Intel, AMD and
ping, On/Off policies Nvidia devices
READEX([98] software | energy and performance opti- | exploit the dynamic behaviour | Linux x86 and ARM systems
mization of application and make re-
sources allocation
MERIC[134] software | energy management dynamic application tuning | Linux x86, ARM and Nvidia
and hardware energy measure- | GPUs systems; HDEEM and
ment DiG supports
FIRESTARTER[120] | software | benchmark tests of cooling | stress execution units and data | x86 CPU and GPU
and maximum power con- | transfer between cores and
sumption memory hierarchy

Table 9: SOTA Supercomputers systems tools for energy/power management

6 ABOUT COOLING SYSTEMS

Designing computers that perform tasks efficiently without over-
heating is a major consideration for all manufacturers nowadays.
Current CPUs and GPUs has a power consumption from tens to
hundreds watts. Some specific CPUs consume little power like
those of embedded systems and mobile devices (few milliwatts or
microwatts). Computers consume electrical energy and dissipate
part of it in as heat coming from the resistance in the circuits.
Excessive heat is a clear threat for the integrity of hardware com-
ponents, with the risk of leading to serious damage. Thus, cooling
system, which can be internal or external, is crucial in order to
cap cap the dissipated heat so as to avoid a critical overheating.

6.1 Cooling technologies for HPC systems

Cooling is crucial to HPC systems, especially for large-scale ones,
but choosing the right technology depends on several factors
like the desired temperature limits and the operating cost. There
are mainly four types of cooling that are commonly considered:
air cooling, liquid cooling, rear door heat exchanger (RDHX) and
immersive cooling.

- Air cooling is the most basic cooling mechanism and also
the most used one. With cheapest infrastructure costs, air cooling
relies on a fan to take heat away from components. This solution
is not sufficient for large-scale HPC, as users require increasingly
dense computing solutions, which generate more heat per rack
of servers.
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- Liquid cooling needs less energy to operate and it stands
as the best cooling option because liquid has the ability to trans-
fer heat much more efficiently than air[139]. In addition, it is
a more ecological approach on a global viewpoint. Moreover,
ambient heat removed from systems can then be used for a heat-
ing solution, thereby enhancing or replacing traditional heating
systems[27].

- Rear Door Heat Exchanger (RDHX) is a cooling approach
that combines both air and water cooling mechanisms. It has
shown a great efficiency on data centers as it acts at the level of
the rack, thus it wide and increasing consideration[117]. Techni-
cally, chilled water is fed to a coil or backplate inside the RDHX,
then rack-mount devices eject the hot exhaust air through the
RDHX, transferring the heat to the water and ejecting cool air
out of the RDHX. The RDHX can be configured in two ways:
active or passive. The benefits of RDHX include [1]: Energy Ef-
ficiency (it can save up to 80% of cooling on the racks and 50%
on the overall data center operation); Heat Removal (Heat trans-
fer is more extensive since it is very close to the heat source.),
less Space Requirement (uses minimum floor spaces), Flexibility
(it has a more basic operation and is easier to install ) and ow
maintenance (light and less frequent efforts and needed). Heat is
removed from a system by putting the coolant in direct contact
with hot components, and circulating the heated liquid through
heat exchangers. Figure 3 gives an overview of how an RDHX
works.
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Figure 3: RDHX main principle

- Immersion cooling considers a direct immersion of the
hardware in a dielectric (but thermally conductive) liquid (also
called coolant), which then circulated through heat exchangers.
The system absorbs the heat (from the source) and drives it
out to the environment through a single-phase or two-phase
system[101]. Some advantages of the immersion cooling include
a high heat transfer coefficient, stable hydrodynamic flow, and
fast/direct cooling with liquid. While immersion cooling can theo-
retically deliver the highest performance and PUE, it is seen by
some ones as too troublesome for their HPC installations, as it
can make the replacement of components tricky[27].

6.2 News trends in liquid cooling design

The market for high-performance cooling systems has grown
significantly as technology has shifted from simple air cooling to
solution using liquid (including immersion cooling). Water is still
the standard for most HPC users as it provides a good balance
between performance and set-up cost.

While there are various variants, the basic concept remains
the same. Water is pumped through a closed system up to a back
plate placed near the hot components. Water has a better thermal
conductivity, so this is potentially a higher performance system,
but requires additional infrastructure. For example, many water-
cooled data centres have a raised floor, so so that all the pumps
can be conveniently routed and driven to the targets.

Meyer and Wettig. [89] developed iDataCool, an HPC archi-
tecture based on IBM’s iDataPlex platform, whose air-cooling
solution was replaced by a custom water-cooling solution. A
significant portion of the energy spent on HPC systems can be
recovered in the form of chilled water, which can then be used to
cool other parts of the computing center. The authors illustrated
the cooling performance and the energy reuse efficiency through
benchmarks.

Nonaka et al. [93] provided a quantitative and systematic anal-
ysis of the impact of the cooling water temperature onto HPC
infrastructures. They evaluated the efficiency of the hot water
cooling technique, taking into consideration not only the energy
reduction on the facility side (cooling system), but also the impact
on the power consumption and on the performance degradation
from the machine side. They shwoed that, contrary to the gain
in the energy consumption, on the HPC facility side, when us-
ing higher temperature cooling water, there is an increase in
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the number of nodes suffering from performance degradation,
especially at synchronization barriers.

Ljungdahl et al. [81] developed a decision support model that
takes basic information regarding a given cluster or data center as
inputs and provides a parameterized output that shows different
configurations and design parameters that can be utilized for the
system. The main outputs include energy savings, cost savings
and efficiency gains through the Power Usage Efficiency(PUE)
and the Energy Reuse Efficiency(ERE). An electricity saving be-
tween 8.14% and 10.8% and a waste heat recovery of 85 to 576
MWh/year were obtained in a Danish case study. Additional sys-
tem configurations beside existing local heating source showed
an energy saving of 332%. The goal of the decision support model
is to assist the design of future waste heat recovery applications
through selection of system parameters including coolant tem-
peratures, energy storage design parameters, District Heating
supply temperatures and District Heating load coverage from the
data center or HPC cluster.

7 ENERGY OPTIMIZATION TECHNIQUES

The power optimization techniques aim at minimizing the energy
consumption besides traditional metrics like computing time or
memory space. This concern is crucial when there is a power
constraint as when the available energy is limited or its supply is
costly. Power optimization can be addressed through hardware
and software approaches, considering static or dynamic strate-
gies. Figure 4 gives an overview of existing energy optimization
techniques grouped by their nature.

7.1 Static energy optimization approaches

- Hybrid CPU design : Hybrid design in CPU is an approach that
combine low power/performance and high power/performance
cores. This was introduced by ARM with BIG.LITTLE architec-
ture and similarly considered more recently by Intel with "Lake-
field" chip [60]. Intel 12th generation CPUs (family code name:
"Alder Lake") are designed following this hybrid model for energy
saving and battery long life for laptop computers.

- Programming languages efficiency : Pereira et al [107] studied
the energy efficiency of 27 programming languages, monitoring
their performance using ten different programming problems.
Out of these 27 selected languages, Python ranked 26. Python
used 59x more energy than the most efficient language, which is
the C language. Nowadays, Python might be the best choice is
many cases, for instance when building and training neural net-
works. There is a significant potential energy saving when con-
sidering a more energy efficient language. The authors showed
interesting findings such as slower/faster languages consuming
less/more energy and how memory usage influences energy con-
sumption.

- Programming aspects : A practical approach to C++ was
presented in the work by Meyers et al. [90] that describes the
basic rules followed by experts (i.e., the things they do or avoid as
much as possible) to produce clear, correct, efficient code. This is
a static optimization technique for time-to-solution and energy-
to-solution by considering the best programming practices.

- Machine learning prediction models : Gao et al. [41] developed
a neural network framework that learns from actual operating
data to model plant performance and accurately predict the PUE.
The results demonstrated that machine learning is an effective
way of leveraging existing sensor data to model DC performance
and improve energy efficiency.
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Figure 4: Taxonomy of power/energy optimization techniques in computer system.

- Circuit design : the work by Beloglazov et al. [13] presents
Static Power Management (SPM) techniques that contains all
optimization methods applied at the design time at various lev-
els including circuit, logic, architecture and system. Circuit level
optimizations consist in the reduction of switching in logic-gates
and combination circuits through a complex gate design and
transistor sizing.

- Energy-aware dedicated architectures: This category is for
hardware level methods, which consider incorporating power op-
timization in the design process [13]. In other words, an efficient
mapping of high-level specifications into the design of the chip
is applied. Apart energy-aware hardware design, it is important
to carefully consider a skillful programming that efficiently take
into account the energy specificities of the target system. Most
often, dedicated architectures (GPU, FPGA, TPU, etc.) are used
for specific kernels based on the aforementioned observations.

- Analytical models prediction for scheduling : Tadonki et al.
[128] designed a combinatorial energy-ware methodology for
an efficient management of power states of the RAM. The au-
thors considered traditional techniques like tiling to improve the
efficiency of the proposed methodology. Experimental results
through simulations considering two well-known algorithms
(Transitive Closure in graphs theory and Fast Fourier Transform)
illustrated the efficiency of their strategy, with 98% energy reduc-
tion related to memory accesses for the Transitive Closure [109].
Another analytical model for memory energy minimization was
proposed by Tadonki and Rolim [127] based on a formal model
that captures the relation between energy and memory mecha-
nisms into a mathematical programming form (such an approach
might also lead to a non-differentiable optmization formulation
[10]). They successfully evaluated their approach considering
the model of a standard RDRAM so as to figure out the behavior
of each parameter together with the energy that can be saved
or lost. Singh et al. [122] developed algorithmic techniques for
memory energy reduction by exploring the structure and data
access pattern to devise an efficient memory power management
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schedule. They investigated and discussed optimality considering
theoretical lower bounds on memory energy. Simulations results
demonstrated significant energy reduction over other existing
approaches.

- Compilation and programming best practices : Quantitative
modeling of energy prediction is one of the more attractive ap-
proach for static performance optimisation, as it could be used
for power aware programming or compilation. Power optimiza-
tion schemes can be incorporated into compilers by exploiting
recurrent patterns in programs[79] and the energy cost of indi-
vidual programming instructions. For the latter, Leite et al. [75]
proposed a fine grained approach for power analysis and pre-
diction, with a focus on a set of basic programming instructions
(addition, multiplication, division, memory read, memory write,
memory copy, print, comparison, malloc). The authors used a series
of micro-benchmarks to measure the energy cost per operation
considering both the overhead of the embedding loop and that of
associated optimizations. Their results showed a 9.48% error rate
on the energy prediction of a sorting algorithm. However, their
work do not consider specific instructions like the FMA (Fused
Multiply Add), which is now available in most of the major CPUs
for floating-point operations performance consideration.

- Power Capping : Power capping is a technique used for set-
ting a power threshold to not be exceeded by the considered
hardware unit. Manufacturers use to provide appropriate tools to
handle power capping: NVIDIA System Management Interface
(NVIDIA), RAPL (Intel), Energyscale (IBM), and APM (AMD).
Cabrera et al. [22] performed an analysis of the performance and
the energy efficiency using power cap technologies with a selec-
tion of various applications. They illustrated the case of the Intel
power cap and the NVIDIA power limit technologies. They ex-
tracted a Pareto front of the configurations that lead to the most
efficient energy usage for the best possible performance. They
provide a methodology base on energy-performance trade-off
selection. But there is no investigation on how to automatically
select the best trade-off.



7.2 Dynamic energy optimization approaches

- DPM (Dynamic Power Management) techniques : DPM tech-
niques are approaches that include methods and strategies for
run-time adaptation of a system’s behavior according to current
resource requirements or any other dynamic characteristic of
the system’s state. A paper by Beloglazov et al. [13] presents
these techniques with the assumption that enabling DPM allows
dynamic adjustment of power states according to current perfor-
mance requirements. Another assumption is that the workload
can be predicted. The authors described different levels for DPM
techniques based on hardware (resp. software) considerations.
Hardware DPM can be different from one hardware component to
another, but they are usually classified as Dynamic Performance
Scaling (DPS) such as Dynamic Voltage and Frequency Scaling
(DVFS) and partial or complete Dynamic Component Deactivation
(DCD) during idle periods. Some software DPM techniques (In-
tel RAPL and Nvidia-msi for instance) apply hardware DPM in
accordance with the system’s power management.

- DFS (Dynamic Frequency Scaling) and DVS (Dynamic Voltage
Scaling) adjust the frequency and the power of computing devices
(i.e, CPU, GPU, FPGA) by scaling the clock frequency/voltage
according to the execution of memory or compute-bound appli-
cation kernels [125]. So a significant reduction of the total power
consumption can be achieved with different voltage/frequency
reduction levels. But very often, voltage and frequency ranges
are fully interdependent, (i.e., a change in clock frequency does
imply changes in the supply voltage, and vice versa). For this
case, DVFS was proposed.

- DVFS (Dynamic voltage and frequency scaling) : DVFS is a
technique to systematically adjust the power through a dynamic
adjustment of both voltage and frequency settings of a comput-
ing device, controller chips and peripherals in order to optimize
resources allocation for the tasks and maximize power saving
when those resources are not needed. Moran et al. [91] evaluated
a series of strategies that can be applied to improve energy effi-
ciency when a failure occurs. This strategy uses the Advanced
Configuration and Power Interface (ACPI). They considered the
use of DVFS techniques and system hibernation at the node
level. They estimated the execution time and the waiting time
of processes that do not fail through a characterization of the
energy consumption required to execute the application and its
communication pattern. They considered a simulator to conduct
their experiments so as to not get bothered by the issues of a real
system and thus focus on the essential.

- Workload consolidation techniques : Sanjeevi et al.[115] pro-
posed an extensive background and motivation of workload con-
solidation techniques in the cloud computing context [76, 115].
In their paper, they described four recent workload consolidation
algorithms considering the goal of reducing energy. In addition,
the features of the best workload consolidation algorithm is high-
lighted.

- On/off policies : shutdown policies stand an appealing ap-
proach to dynamically adapt the active resource configuration to
the actual workload by tuning off unused components in order
to reduce power consumption. However, there are some impor-
tant constraints to take into account for these policies like the
cost (time and energy) of switching on and off, the power and
energy consumption bounds caused by the electricity grid or the
cooling system, and the availability of renewable energy. Benoit
et al. [14] studied the existing approaches that are based on these
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policies and proposed models for translating the energy con-
straints into different shutdown policies that can be combined
for a multi-constraint purpose.

- Workload peak reduction : Sai et al.[113] presented a space-
time multiplexing (STM) power management technique imple-
mented through DVFS for workload balancing. The physical
design parameters are based on 130nm CMOS process with TSV
models. Experiment results showed that their approach can lead
to a peak of 38.10% power reduction and 2.60x workload balanc-
ing.

7.3 Hybrid energy optimization approaches

Vaddina et al.[132] proposed a workflow for energy and temper-
ature profiling on systems running parallel applications. They
did their experimentations standard multi-core processors using
common benchmark applications. Their strategy allows full and
dynamic runtime control so as to keep the frequency of the pro-
cessors within a predetermined range. By this way, they showed
that the energy response to frequency scaling is highly depen-
dent on the workload characteristics and it is a convex fonction
around the optimal frequency point. Another interesting result
from their work is the fact that the tested low-power processor
was consuming more power on average than the other standard
processors. Their investigation surely contribues to the under-
standing of power dissipation and its link with temperature as
the necessary first step towards optimizing the energy efficiency
of HPC systems.

Grant et al.[50] presented a taxonomy of power profiling tech-
niques on modern HPC platforms. The authors used three HPC
mini-applications for analysis on three production HPC systems
to examine meaningful details, scope, and complexity of the se-
lected energy profiling techniques. Their work demonstrates that
a combination of out-of-band measurement with in-band profil-
ers can provide a detailed and accurate view of power usage with
almost no overhead.

Jafari-Nodoushan et al. [67] proposed a heuristic battery-aware
scheduling policy for periodic and non-periodic real-time tasks
under DVS mechanism, with an explicit consideration of power
leakage. They compared the battery consumption of their pro-
posed policies with an optimal solution, which could be derived
via Calculus of Variations (CoV). Experimental results showed a
maximum of 17.7% (resp. 11.3%) battery charge saving for non-
periodic (resp. periodic) tasks in comparison to the critical fre-
quency method.

8 ENERGY OF AI PROCESSING
8.1

Training a single Al model can emit as much carbon as five cars
in their lifetimes [137]. Yet, this analysis pertained to only a one-
time training run. When the model is improved by repetitive
training, the energy cost is significantly greater. Many large
companies, which can daily train thousands and thousands of
models, are taking the energy issue more seriously. The work
by Strubell et al.[124] describes and analyses the problem by
exploring AI's environmental impact, studying ways to address
it, and issuing calls to action.

Cutting-edge Al models have nowadays billions of parameters
and more. One popular case, GPT-3, has 175 billions of machine
learning parameters. The model was trained on NVIDIA V100, but
researchers have estimated that the full training would have cost
34 days and $4.6 millions with 1024 A100 GPUs. While energy

Motivation
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usage has not been disclosed, it’s estimated that GPT-3 consumed
936 MWh([2]. As the models get bigger and bigger in order to
handle more complex tasks and the huge volume of requests,
the demand for high-end servers to process the models grows
exponentially.

Since 2012, the computational resources needed to train cutting-
edge Al systems have been doubling every 3.4 months [32]. This
escalation in energy use/requirement stands against the common
promise of reaching carbon neutrality in the coming decade.

8.2 Studies on CO, concerns with Al

Qiu et al.[108] provided a pioneer systematic study of the carbon
footprint of federated learning. They proposed a rigorous model
to quantify the carbon footprint, thereby facilitating any inves-
tigation of the relationship between federated learning design
and carbon emissions. They showed that federated learning can
emit up to two orders of magnitude more carbon than centralized
machine learning. However, in some settings, both approaches
can be comparable because of the low energy consumption of
embedded devices. Their work highlighted future challenges and
trends in federated learning about reducing its environmental
impact considering algorithms efficiency, hardware capabilities,
and stronger industry transparency.

Luccioni et al.[82] provided an estimate of the carbon foot-
print of BLOOM, a 176-billion parameter language model, over
its lifetime. The authors estimated that BLOOM’s final training
emitted approximately 24.7 tons of COze for the dynamic power
consumption only, and 50.5 tons for all processes ranging from
equipment manufacturing to the operational phase. The energy
requirement and carbon emission of its deployment for inference
via an API endpoint receiving user queries in real-time was also
studied. The authors also discussed the difficulty of estimating
accurately the carbon footprint of ML models and reported fu-
ture research directions that can contribute to improving carbon
emission.

Patterson et al. [104] studied the carbon footprint of large-
scale neural network training and discussed about opportunities
to improve energy efficiency and CO; emission. The authors
estimated the energy consumption and the carbon footprint of
several recent large models: T5, Meena, GShard, Switch Trans-
former, GPT-3, and Evolved Transformer. Their study illustrate
that the choice of neural network architecture, datacenter, and
processing unit can reduce the carbon footprint by 100-1000x.
The authors also highlighted the need for more focus on how
to improve emission metrics in addition to accuracy. Address-
ing these concerns lead to a reduction of the carbon footprint
of ML through accelerating innovations in the efficiency of the
algorithms, systems, hardware, datacenters, and in carbon free
energy.

Wu et al.[137] studied optimizations techniques for opera-
tional energy footprint reduction across Facebook’s Al applica-
tions. Their work showed improvements on different standpoints:
model, platform, infrastructure, and hardware. They described op-
timization techniques on Platform-Level Caching and showed an
improvement of power efficiency by 6.7x with application-level
caching. Another optimization is GPU acceleration. In addition
to caching, deploying across GPU-based specialized Al hard-
ware unlocks an additional 10.1x energy efficiency improvement.
Algorithmic optimizations provided an additional 12x energy
efficiency reduction. Considering half-precision (e.g., going from
32-bit to 16-bit operations) provided a 2.4x energy efficiency
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improvement on GPUs. Another 5x energy efficiency gain was
achieved by using custom operators to schedule encoding steps
within a single kernel of the Transformer module.

Patterson et al.[103] presented some best practices to reduce
the energy of ML training by up to 100x and CO, emissions by
up to 1000x. The authors recommended that ML papers should
explicitly include COze to foster competition not only on model
quality. Publishing emissions ensures accurate accounting. They
showed that for large-scale ML deployments, minimizing emis-
sions from training should not be the unique as subsequent steps
like serving also count. Approaches like neural architecture search
increases emissions but lead to more efficient serving and a strong
overall reduction of the carbon footprint of ML. The work also
highlighted the carbon footprint to be erased entirely if cloud
providers could fully consider renewable energy (it is already the
case with Google and Facebook, and will soon be the case with
Microsoft Azure). Another interesting insight from their work is
that published studies overestimate the cost and carbon footprint
of ML training because they didn’t have access to exact infor-
mation or because they extrapolated point-in-time data without
accounting for algorithmic or hardware improvements.

Ludvigsen [83] demonstrated the difficulty in determining the
environmental impact of Machine Learning as a field. Moreover,
he showed how easy it is for practitioners to estimate the car-
bon footprint of their machine learning models with tools like
CodeCarbon[11] or ML CO2 Impact[73]. In addition, 17 concretes
ideas on how to reduce the carbon footprint of machine learn-
ing models are also presented. Some of these ideas can be easily
implemented, while others require more efforts and expertise.
Indeed the energy profiling of Al applications is a serious focus
worth investigating [24, 116].

The ecosystem of sustainable Al is presented and commented
by Zhao et al. [142]. They presented an overview of various areas
for potential changes and improvements from the standpoint of
operational and hardware optimizations for HPC systems con-
sidering Al workloads. Three aspects covering the main issues
from a micro-to-macro perspective analysis are proposed: in-
frastructure and resource utilization, user and behavior, and the
community of the researchers and practitioners. They showed
that concerted and unified efforts are required in order to make
effective the transition to a greener ecosystem for Al researches
and practices.

8.3 Energy profiling tools for Al applications

Several tools have been developed in recent works about esti-
mating the carbon footprint of machine learning models. These
tools estimate the carbon footprint from energy consumption
estimates or measurements.

8.3.1 Tools that operate from energy estimates.

- ML CO2 Impact [73]: This is a tool that calculates the amount
of raw carbon emissions and an estimate of the offset carbon
emissions. The latter value depends on the grid used by the cloud
provider. About the estimation, it does not take into account the
datacenter PUE (Power Usage Effectiveness).

- Green Algorithms [74]: An online tool which enables users to
estimate and report the carbon footprint of their computation.
The tool easily integrates with given computational processes
as it requires minimal information and does not interfere with
the considered code, while also accounting for a broad range
of hardware configurations. With power-hungry and expensive



training algorithms coming from cutting-edge Al, the tool is
worth considering for the address the underlying energy concern.

8.3.2 Tools that operate from energy measurements.

- Codecarbon [11]: Codecarbon is a (lightweight) Python package
that estimates estimates the amount of carbon dioxide (COZ2)
produced by a given code. It achieves that purpose by estimat-
ing the electricity power consumption (GPU + CPU + RAM) of
the device and weighting it with the local carbon intensity (i.e.
where the computing is actually done). The tool thus enables
developers to track CO2 emissions across ML experiments or
other programs. Power consumption will be successfully tracked
only if there are RAPL files within the indicated directory. If not
found, CodeCarbon will switch to a fall back mode.

- Tracarbon [133]: Tracarbon is a Python library that tracks the
energy consumption and thereby estimates carbon emissions. It
detects automatically the key information like the location and
the hardware type before starting the tracking. Tracarbon is a
flexible tool designed to easily include other platforms, cloud
providers, carbon emission APIs, or other data exporters through
a Command-line interface (CLI) with already defined metrics or
programmatically with the API by defining the desired metrics.

- Eco2AI [18]: Eco2Al is a python library for CO, emission
tracking. It monitors energy consumption of CPU and GPU de-
vices and estimates equivalent carbon emissions by taking into
account the local carbon intensity. Eco2Al is applicable to any
python script. All emissions data together with information about
the device are recorded in a local file.

- Experiment-impact-tracker [54]: Experiment-impact-tracker
is defined as a toolkit for tracking energy, carbon, and compute
metrics for machine learning (or any other) experiments. The
tool runs under Linux system on Intel chips and NVIDIA GPUs
for which it records information related to carbon emissions.

- Carbontracker [6]: Carbontracker is a tool for tracking and
predicting the energy and carbon footprint associated to the
training of deep learning models. The output result includes
duration, energy, and carbon footprint of training a given deep
learning model with the main parameter (specified by the user)
being the number of monitored epochs. The tool forecasts the
carbon intensity related to the electricity production during the
predicted duration, then uses it to predict the carbon footprint.
At the preliminary stage of the development of the tool, a basic
linear prediction model is considered.

- Zeus [141]: Zeus is an online optimization framework for
DNNs (Deep Neural Network) training workloads. The tool pro-
vides the Pareto frontier for energy-time consumption trade-off
and allows users to navigate around by automatically tuning the
batch size and GPU power limit of their jobs. Zeus uses an online
exploration approach in conjunction with just-in-time energy
profiling, thus overcoming the need for offline measurements,
while adapting to data drifts over time. The authors shows that
Zeus can improve the energy efficiency of DNNs training by
15.3%-75.8% for diverse workloads.

8.4 Energy optimization of Al applications

Cutting-edge Al models require a huge number of parameters
and imply a noteworthy computing load, making them being
considered as cumbersome from the standpoint of the classical
complexity references (running time, memory, and energy). In
addition, Al applications are expected to be intensively used both
at the level of a single user for routine issues or a collective level
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(i.e. server mode). Thus, there is clear need for optimization tech-
niques for the implementation (training and inference) and the
deployment of large Al models on low-power devices considering
their limited hardware characteristics. This section enumerate
and describe the mains techniques considered in the literature to
cope with energy issues related to Al applications (design, im-
plementation and execution). Those techniques can be grouped
considering the following major categories: Quantization, prun-
ing, filters compression, matrix factorization, neural architecture
search, knowledge distillation, and hardware selection.

8.4.1 Quantization.

One of the most popular energy-aware approach of deep learn-
ing optimisation is quantization. Quantization is a technique to
reduce the computational and memory costs by considering low-
precision data types (e.g. 8-bit integer) instead of the ordinary
ones (e.g. 32/64-bit floating point). For instance, inference could
be implemented by representing the weights and activations with
low-precision data types. Thus, quantization stands as a tech-
nique to speed up inference through running with quantized
operators. Quantization can be also considered for the training
phase in a so-called quantization-aware training approach. There
several advantages of quantization including: more compact model
representation; wider vectorization (SIMD); less memory storage;
less energy consumption (potentially), faster computation, deploy-
ment on embedded devices. Popular Deep learning frameworks like
TensorFlow and PyTorch provide a quantization API to simplify
the quantization process. Gholami et al. [43] provided a survey
of quantization techniques for efficient deep neural networks.

84.2 Pruning.

Pruning is technique applied on inference to get models of smaller
in size, thus, similarly to quantization, it yields to better mem-
ory/energy/processing complexity with minimal loss in accuracy.
Removing less important parameters and connections from an
original deep neural network can clearly reduce the volume of
memory accesses and associated computations. In addition to
the aforementioned advantages, pruning might allow for the
execution of the considered model in low-end devices such as
mobile/embedded devices. Yang et al. [140] have shown in their
work that an energy-aware pruning technique for AlexNet and
GoogleNet can reduce energy consumption by 3.7.

8.4.3  Filters compression.

Convolution kernels are the bulk of the computations in DNNs,
and the fully connected layers contain around 89% of the parame-
ters in DNNs like AlexNet[45]. To reduce the power consumption
of DNNSs, the research efforts have focused on reducing the arith-
metic operations in the convolution layers and the number of
parameters in the fully connected layers. The so-called bottleneck
architecture [53] can significantly reduce memory and latency
requirements of DNNs . For most computer vision tasks, these
techniques preserve accuracy. Filter compression is orthogonal
to pruning and quantization techniques. The three techniques
can be used together for a combined optimization approach to
reduce energy consumption.

8.4.4 Neural architecture search.

There are many different network architectures and optimiza-
tion techniques to consider when designing low-power Al ap-
plications. Neural architecture search (NAS) is a technique for
automating the design of artificial neural networks (ANN). Many
works address the reduction of computational cost and environ-
mental impact of deep learning by accelerating neural network
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architecture search and hyperparameter optimization. Frey et
al. [40] introduced a framework called training performance es-
timation (TPE), which is based on existing techniques for esti-
mating the speed of the training process. Ranking models (by
estimated performance) without training to convergence leads
to a potential saving of up to 90% of time and energy of the full
training budget. Some variants of early stopping that generalize
common regularization technique to account for energy costs
were also proposed, and this approach enables significant energy
savings across the entire pipeline of model development and
deployment. Narsin et al. [92] proposed ENOS (Energy-Aware
Network Operator Search in Deep Neural Networks) approach
to address the energy-accuracy trade-off of a deep neural network
acceleration. The search in ENOS is formulated as a continu-
ous optimization problem that is solvable using gradient descent
methods. This lead to a minimal overhead in the training cost
when learning both layer-wise inference operators and weights.
ENOS improves accuracy by 10-20% in comparison to the con-
ventional uni-operator search approaches under the same en-
ergy budget. ENOS also outperforms the accuracy of comparable
mixed-precision uni-operator implementations by 3-5% for the
same energy budget. Some other works based on the splitting
steepest descent algorithm for fast energy-aware neural architec-
ture optimization were also proposed [135, 138].

8.4.5 Knowledge distillation.

Knowledge distillation refers to the approach of transferring
the knowledge from a large but unwieldy model or set of mod-
els to a single smaller model that can be deployed under real-
world constraints. In many recent publications on the topic, the
teacher/student analogy is used to describe how knowledge distil-
lation learning models work. There are three different ways that
the larger teacher model is used to help training the smaller stu-
dent model: response-based knowledge, feature-based knowledge
and relation-based knowledge [49]. Through a varying combina-
tion of these three techniques, it has been shown that some very
large models can be migrated to smaller representations. Prob-
ably the most well-known of these is DistilBERT [114], which
is able to keep 97% of its language understanding versus BERT,
while having a model which is 40% smaller and 60% faster.

8.4.6 Hardware selection for training.

Using processors that are optimized for ML training such as
tensor processing units (TPUs) and recent GPUs (e.g. V100 and
A100) instead of general-purpose processors can improve perfor-
mance/watt by factors 2 to 5 [103].

9 PROSPECTIVE VIEWPOINT

Traditional Microcontrollers works fine under normal conditions
with no need for external cooling mechanism. Some applications
demand a high computational power from Microcontrollers, so it
is important to keep control on heating as they are fragile devices.
However, general purpose computers, accelerators and modern
microcontrollers like coral dev board need explicit cooling. More
generally, the correlation between computing power and energy
efficiency has led to the choice of low-power computing units at
the expense of the potential clock speed. Even if the gap between
the peak performance and the sustained performance is a genuine
argument in favor of the fact that running applications will not
really suffer from this choice, the evolution of HPC cannot just
keep it that way. Cooling systems have to be more efficient and
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scalable. Hardware cooling may be handled at the chip level in
the not-too-far future. Quantum cooling is also in the agenda.

The deployment of large-scale servers provides an opportu-
nity to build performance/energy measurement and optimization
tools to ensure intensive utilization of the underlying infrastruc-
ture with efficiency and robustness. All details have to be taken
into account. Indeed, for instance, static power consumption plays
a non-trivial role in the context of the overall data center elec-
tricity footprint, thus the need for a an effective management of
processor idle state.

The increasing adoption of low-power processors, often called
System-on-Chip (SoC) or microcontrollers (originally designed
for the embedded systems and mobile devices) is still justified in
the context of the so-called embedded HPC, given their increas-
ing computing potential at low cost and low electrical power.
However various limitations are to be taken into account like 8,
16 or 32bit-only architectures, small memory (RAM and caches),
high-latency interconnections, and the unavailability of Error-
Correcting Code Memory. Some low-power designs are reducing
the processing performance gap with high-end processors at com-
petitive costs, while keep the traditional advantage of low-energy
thus a reduced carbon footprint. For these reasons, such devices
(like Arduino or Raspberry Pi) are widely used for equipping IoT
systems.

10 CONCLUSION

Energy concerns have an increasing priority for mainly two
reasons. The first reason comes from the standpoint of “energy
as a cost and/or constraint”. The cost of the necessary energy
to keep HPC systems running with all surrounding aspects in-
cluding cooling is becoming significantly high, especially with
large-scale infrastructures. The need for speed, which is primary
goal of HPC, leads to the choice of faster computing units for
which the design is mainly guided by processing speed regardless
of energy aspects. This is for instance case with GPUs. Train-
ing cutting-edge Machine Learning algorithms are handled with
large-scale GPU(-enhanced) clusters and their usage is entering
into the routine by an increasingly large community (like with
the case of ChatGPT), these two facts clearly exacerbate the en-
ergy concern. A complementary fact in this aspect is the “energy
as a constraint” standpoint. Embedded systems and mobile plat-
forms are typically battery-powered, thus they run with a fixed
amount of energy, which thereby stands as a critical resource.
Many applications including Al ones are intended to run on such
systems to address common issues, thus the importance of en-
ergy efficiency at all levels (supply and consumption). The second
reason for the focus on energy is CO; emission concern with all
its consequences. Designing energy-aware solutions is very im-
portant and this can be done with several approaches including
algorithms design, programs implementations, run-time monitor-
ing tools, compilation, hardware mechanisms, system policies, and
more, beside energy supply and ways to cap heat dissipation and
CO, emission. As HPC is actively moving on through notewor-
thy processing performance and devices diversity, addressing
energy concerns and related aspects is genuinely a crucial topic
we should focus on and even anticipate.
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