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Abstract

The remarkable increase in computing power together with a
similar increase in sensor and actuator capabilities now under
way is enabling a significant change in how systems can sense
and manipulate their environment. These changes require
control algorithms capable of operating a multitude of inter-
connected components. In particular, novel “smart matter”
systems will eventually use thousands of embedded, micro-
size sensors, actuators and processors.
In this paper, we propose a new framework for a on-line, adap-
tive constrained optimization for distributed embedded appli-
cations. In this approach, on-line optimization problems are
decomposed and distributed across the network, and solvers
are controlled by an adaptive feedback mechanism that guar-
antees timely solutions. We also present examples from our
experience in implementing smart matter systems to motivate
our ideas.

Introduction
The remarkable increase in computing power together with
a similar increase in sensor and actuator capabilities now
under way is enabling a significant change in how systems
can sense and manipulate their environment. These changes
require control algorithms capable of operating a multitude
of interconnected components. In particular, novel “smart
matter” systems will eventually use thousands of embedded,
micro-size sensors, actuators and processors. As an exam-
ple, consider an air-jet paper mover, consisting of 576 ac-
tuators and 30K sensor pixels embedded into an active sur-
face that moves a sheet of paper on an air bed by control-
ling each jet valve individually (Jacksonet al. 2001). As
another example, consider a hyper-redundant modular robot
that consists of hundreds of interchangeable robotic mod-
ules connected into complex configurations, each module
with its own actuated joint, sensors, processor, and commu-
nication (Yim 1994). As yet another example, consider ma-
terials with embedded, co-located force actuators and sen-
sors for active vibration control (Chase, Yim, & Berlin 1999;
Hogg & Huberman 1998) or damage identification (Wang &
Chang 2000). Such systems will require control, sensing and
diagnostic algorithms that are robust, scalable, and reconfig-
urable.

Constrained optimization is at the core of many plan-
ning, control, reconfiguration, and fault diagnosis applica-
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Figure 1: Sketches of a) centralized, b) decentralized, and c)
hierarchical control organization.

tions (Bondarenko, Bortz, & Mor´e 1998). In fact, the de-
velopment of optimal controllers and diagnostic routines for
smart matter systems often starts with the formulation of a
model of the system dynamics and an objective function to
be optimized by the algorithm (e.g., the cost function of an
LQR controller). For some systems, such as modular recon-
figurable robots, only an on-line, model-based control ap-
proach is able to robustly handle the variety of non-standard
objectives and constraints required (Fromherz, Hoeberechts,
& Jackson 1999; Fromherzet al. 2001).

Today, solutions to these control problems are usually at



either one of two extremes: they are either completely cen-
tralized or completely decentralized. Centralized algorithms
(Fig. 1a) provide optimal performance (taking into account
the complete system behavior when controlling each actua-
tor), but clearly do not scale to the large numbers of elements
in smart matter systems. Completely decentralized (i.e., lo-
cal) algorithms (Fig. 1b), on the other hand, scale well and
make use of a system’s distributed processing capabilities,
but they typically result in poor performance (e.g., introduc-
ing large errors or resulting in inordinate actuation energies).

Clearly,hierarchical approaches(Fig. 1c) promise an in-
termediate solution: at various levels of the hierarchy, the
algorithm takes into account groupings of system elements
and their behaviors, while also being able to distribute the
computation among a number of processing nodes. Consider
for example the force allocation problem in the air-jet paper
mover (Fig. 2) (Jacksonet al. 2001; Fromherz & Jackson
2001), where the goal is to generate an optimal allocation for
the air jets such that together they produce the desired forces
and torques that will move the sheet of paper (see below for
details). Our implemented approach is a self-similar, hier-
archical decomposition of this task, where the actuators are
partitioned into smaller and smaller groups (Fig. 3): at every
level in the hierarchy, jets are combined into groups that act
like “super jets” (each delivering forces that act on the pa-
per), and no level has to know whether the next-lower level
consists of individual jets or jet groups. Similar considera-
tions have been made for other smart matter systems (Hogg
& Huberman 1998).

From a model-based computing perspective, however,
there are at least two major barriers to employing this hier-
archical, distributed approach in real-world systems: (1) the
decomposition of a centralized formulation into a hierarchi-
cal structure is non-trivial, as it often involves complex prob-
lem reformulations and the balancing of trade-offs between
performance and resource uses (computing, communication)
that have to be modeled explicitly; and (2) today’s optimiza-
tion / constraint solving algorithms are not ready for real-
time, resource-constrained applications.

We have studied and developed smart matter applications
for a number of years and found several suitable model-
based control solutions (Fromherz, Hoeberechts, & Jack-
son 1999; Jacksonet al. 2001). From this experience,
we are proposing a new framework for an (on-line) adap-
tive constrained optimization service for distributed embed-
ded applications. In this approach, model-based control and
thus on-line optimization problems are decomposed and dis-
tributed across the network, and solvers are controlled by an
adaptive feedback mechanism that guarantees timely solu-
tions. The framework addresses the two barriers described
above, i.e., problem scale and real-time constrained opti-
mization. This paper discusses the two main components of
our approach, decomposition and adaptive control of solv-
ing, in the following two sections. We also describe illustra-
tive examples to motivate our ideas and end with conclusions
and future work.

a)

Air jets

Sensor bars

Sensor readout Valve drivers

Host

Sheet

Control

Fusion Controller Allocation

Sensor states Valve states

Sheet Forces

Sheet goal

6 3

57632,000

b)

Figure 2: Air-jet system: a) Photograph of 35 cm� 35
cm air-jet paper mover module: 16-element arrays are flap
valves and associated jets, black bars are sensor arrays. b)
System architecture and layout of the board.

Problem Decomposition for
Distributed Solving

Because of the large numbers of sensors, actuators, and com-
puting elements in smart matter systems, we suggest that
problem decomposition and distribution techniques are core
to enabling and delivering a scalable and robust solver ser-
vice for such systems. In particular, decomposition allows
us to balance control requirements with communication and
resource realities. For problems with thousands of variables
and constraints, representing the large number of distributed
but connected physical elements in large-scale smart mat-
ter systems, it is often both infeasible and unnecessary to
solve the constrained optimization problem as a single prob-
lem on a single processor. Instead, our proposed approach is
based on the idea that systems with tens or hundreds of thou-
sands of sensors and actuators, whether discrete or contin-
uous at the individual element level, approach a continuum
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Decomposition and hierarchical allocation

Figure 3: Decomposition of a force allocation problem into
sub-problems on an active surface

in the limit and thus can be approximated by much lower-
dimensional continuous models at higher levels. (This puts
the conventional idea of hybrid systems on its head, where
discrete models are usually at the top and continuous models
at the bottom.) A second key insight is that such large-scale
problems are often self-similar at multiple levels, as already
illustrated above. Finally, we have observed that different
groupings of elements can lead to widely different computa-
tional complexities at lower levels. Even if the hierarchical
abstraction is fixed ahead of time, we can still decide dynam-
ically which concrete actuators to group together, e.g., based
on run-time information about available actuators.

Constraint-directed problem decomposition

We are investigating two schemes for automatically decom-
posing tasks on many-element systems. In aconstraint-
directed approach, we are developing structure analysis and
abstraction techniques for decomposing and approximating
large-scale constraint problems. The goal is to discover
structure in constraint problems that can be exploited by
solvers for the subproblems. For instance, we have found
that maximizing symmetries in subproblems by grouping
actuators that are interchangeable with respect to the con-
straints can make a dramatic difference. As shown in an ex-
ample below, by using the problem’s constraints to guide the
grouping, solving subproblems at lower levels of the hier-
archy can become trivial. In certain systems, it may even
be possible to precompute the lower-level solving step and
replace it by a constant-time table lookup. Problem charac-
teristics such as symmetries seem to be common in systems
where constraints arise out of (often uniform) physical char-
acteristics. This proposed approach of structure analysis and
abstraction can lead to considerable increases in efficiency
with reasonable error bounds for problems in large-scale sys-
tems (Fromherz & Jackson 2001).

An example for problem decomposition

We illustrate the potential of constraint-directed decomposi-
tion on the air-jet paper mover introduced above. For exam-
ple, the air-jet force allocation problem can be formulated as
an optimization problem, attempting to achieve the desired
total forces while minimizing actuation energy (Fromherz &
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Figure 4: Aggregation heuristics applied to the air-jet ta-
ble (excerpts): a) neighborhoods in geometric space (tiles);
b) neighborhoods in geometric and force space (rows and
columns)

Jackson 2001):
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where forcesFx andFy and z-torqueTz are the desired to-
tal forces to be applied to the sheet,fi = (fxi fyi) are the
allocated x and y forces for jeti, (xi; yi) is a jet’s position,
andwi = (wxi wyi ) are the weighting factors for each jet’s
contribution of x and y forces.

This problem can be decomposed recursively into sets of
(smaller) optimization problems to be solved by subgroups at
the next-lower levels of the hierarchy. Except for the bottom
level, a “jet” i in Eq. (1) refers to the “virtual jet” that arises
out of a group of jets. We are free to choose how to aggre-
gate jets into virtual jets. One obvious heuristic is to follow
the geometric layout, e.g., each tile of jets becomes a virtual
jet (Fig. 4a). The advantage of this heuristic is that a modu-
lar structure of the system leads to a corresponding modular
structure of the allocation algorithm.

Another heuristic is to aggregate jets in neighborhoods of
a different parameter space, namely that of force directions
and location along just one of the axes. This heuristic is in-
spired by the linear superposition model in the constraints
of Eq. (1). We observe, for example, that all x-jets with the
same y position are interchangeable with respect to the con-
straints in Eq. (1). In fact, if our system consisted only ofN
x-jets with the same y position, the instantiation of the allo-
cation functions would simply be

fxi =
Fx
N

; fyi = 0 (i = 1; : : : ; N) (2)

For discrete actuators, one can simply calculate the number
of necessary jets asFx=fmax rounded to the nearest integer
and then open that many jets (fmax is the maximum force
available from a single jet).

Generally, rows of x-jets with the same y position and
columns of y-jets with the same x position lead to par-
ticularly simple allocation functions within a row or col-
umn. Therefore, we have implemented an aggregation of jets
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where theN virtual jets are divided into “x modules,” each
with only x-directed jets with a common y positionyi, and
“y modules,” each with only y-directed jets with a common x
positionxi (Fig. 4b). Now, allocation to these virtual jets has
to compute only eitherfxi orfyi for the x and y modules, re-
spectively, and allocation within a virtual jet follows Eq. (2)
for x modules and its equivalent for y modules, instead of
solving the more complex Eq. (1). Thus, the decomposition
at one level greatly simplifies the allocation at another level.

Nested-loop partitioning
In a second approach to decomposition, we are develop-
ing a nested-loop partitioningapproach that takes as input
a nested-loop formulation of the task, as well as models of
the system and the application (e.g., computing and memory
limits, performance objectives) and a range of suggested hi-
erarchical structures. In a nested-loop formulation, each ver-
tex of the iteration space represents a given node or agent
(e.g., sensor or actuator) (Ancourtet al. 1997). Examples
are sensors and actuators embedded on a two-dimensional
surface, such as the sensors and jets in the paper mover and
the vibration sensors and actuators embedded on a surface
grid for vibration control. There, a control cycle can be mod-
eled as nested, two-dimensional loops iterating over these el-
ements for the sensing, control, and actuation tasks. Parti-
tioning groups and effectively parallelizes these loops such
that the resource constraints are satisfied. For hierarchical
applications, partitioning is applied recursively in order to
determine an appropriate hierarchical structure and parame-
ters, such as the branching factor and height of the hierarchy.

Adaptive Control of Problem Solving
The second element of our approach is the on-line tuning of
solvers for the environment and problems of embedded ap-
plications. In general, the design of a problem solver for a
particular problem depends on the problem type, the system
resources, and the application requirements, as well as the
specific problem instance. One approach to this design is-
sue is the use ofadaptive control of problem solving. We
define adaptive control of solving as modifying the solver
or the problem representation in response to environment
or problem changes. Adaptive solving control makes use
of a model or set of rules concerning the relationship be-
tween various problem, system, and application parameters
and choices for solvers, heuristics, and problem transforma-
tions. These choices define the control parameters of the
solver. This model or rule base also enables the prediction
of the behavior of the solver defined by these control param-
eters. The predicted behavior can be used to monitor the
actual on-line behavior of the solver and update the control
parameters accordingly. If the predicted behavior is consis-
tently at odds with the actual behavior, the accumulated per-
formance feedback can be used to update the model or rule
base itself.

A framework for adaptive solver control
These ideas are directly analogous to on-line adaptation in
control systems (̊Aström & Wittenmark 1995; Levine 1996),
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Figure 5: Adaptive solving system framework

with the solver taking the place of the plant. Based on this
viewpoint, we propose a generic framework for the adaptive
control of solving (Crawfordet al. 2001), shown in Fig. 5.
This framework includes three levels of increasingly sophis-
ticated control: open-loop, feedback, and adaptive control.
In a basic control system, the controller takes the reference
input and outputs a control signal to the solver without any
feedback. For such a feed-forward, open-loop control sys-
tem to produce the desired behavior, the controller must be
designed and tuned off-line using a very accurate model of
the solver. Any inaccuracies in the model or variances to the
system (e.g., the problems to be solved) will not be taken into
account at run-time.

When the feedback loop is added to the control system,
the controller gains the ability to react to the quality of the
solver’s output. The controller still must be designed and
tuned off-line, but the system has a much better chance of
performing as desired.

In an adaptive system, the controller is able to adapt to
compensate for systematic performance errors caused by in-
accurate solver modeling. The controller is designed and
tuned off-line, but can be formulated parametrically in terms
of solver parameters that may be unknown or imprecisely
known. The model becomes more accurate over time and
can also adapt to changes in the problems and solver’s en-
vironment.

This functional framework is useful for structuring a prin-
cipled discussion of adaptive solving approaches. The fol-
lowing description outlines the proposed functionality. Ex-
amples of possible implementations and instantiations of its
elements are provided in (Crawfordet al. 2001).

Referring to Fig. 5, the Solver Module represents software
for problem transformation and solving, possibly containing
multiple algorithms and heuristics among which to select, as
well as tunable parameters. (By problem transformation, we
mean changes to the problem formulation, such as changing
the granularity of variable domains to improve efficiency.)
The algorithms and parameters are selected with the input
u, provided by the Control Module. This module makes the
solver algorithm selection and tuning decisions based on the
environment specification,E, the problem to be solved,P ,
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the on-line (during a run) behavior of the solver,y, and some
internal tuning parameters,a. The environment,E, includes
models of both the system specifications and the application
requirements. Including the on-line behavior of the solver
as an input to the Control Module allows the solver control
to have a feedback component. The role of the Adaptation
Module is to monitor the behaviory of the Control Mod-
ule/Solver Module system and adapt the parameters,a, of
the Control Module to improve performance. Its outputs,â,
are the current estimates of the optimal Control Module pa-
rameters. The Adaptation Module would typically act at a
much slower time scale than the feedback loop. As it actu-
ally modifies parameters of the Control Module, its actions
would generally not be based on system behavior for a sin-
gle problem or subproblem, as the feedback control would.

Both the Control Module and the Adaptation Module con-
tain, either explicitly or implicitly, information about the
solver and its expected behavior. A predictive model of ex-
pected solver behavior would provide a basis for the Control
Module to make its solver parameter choices. The Adapta-
tion Module would use the predicted behavior as a yardstick
for measuring the true behavior,y. The controller parameters
a adjusted by the Adaptation Module might then be parame-
ters of the solver model.

Previous approaches to adaptive solving for different
classes of problems have involved the first of the levels of
control enumerated above and sometimes the second. In
contrast, most of the work on adaptive solving to date has in
fact not been adaptive, at least not in the control sense (Craw-
ford et al. 2001). In other words, these approaches are not
adaptive to the run-time environment of the solver, a crucial
prerequisite for deploying solvers in embedded applications.

An example for feedback and adaptation in solving
We present the following example in order to illustrate the
value of feedback and adaptation in on-line solving. It has
been shown that the combination of global and local solvers
can be particularly effective for complex, realistic prob-
lems (Shanget al. 2001b). Consider, for instance, a coopera-
tive global/local solver for continuous constraint satisfaction
problems that uses the Nelder-Mead algorithm (Lagariaset
al. 1998) for global search followed by sequential quadratic
programming for local search (fminsearch andfmincon, re-
spectively, in the Matlab Optimization Toolbox (Matlab Op-
timization Toolbox 2001)). Such a solver has several tun-
ing parameters that need to be set. One of these is the size
of the initial simplex for the Nelder-Mead algorithm, which
determines the search scale. An important indicator of com-
plexity for this type of problem seems to be the constraint-
to-variable ratio (constraint ratio for short). Thus, a first step
might be to analyze the performance of various initial sim-
plex sizes for various constraint ratios, as is shown in Fig. 6a
for a 25-variable problem. Such an analysis provides the ba-
sis for a solver model and as such the foundation for an open-
loop control scheme. This scheme specifies that the simplex
size should be chosen as the one yielding the lowest median
complexity given the problem’s constraint ratio.

If, for instance, for a problem with constraint ratio 6.6,
the simplex size were chosen based on Fig. 6a, a size of 0.3
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Figure 6: Continuous constraint satisfaction problems with
different initial simplex sizes: This figure shows data on
sum-of-sines type continuous constraint satisfaction prob-
lems with 25 variables. The top diagram shows the median
(over 50 instances) of the number of function evaluations
required for problems with different constraint ratios, using
initial simplex sizess between 0.03 and 10. The bottom dia-
gram shows, for a single constraint ratio, the variation among
all instances and all simplex sizes

would be selected (the lowest point in the second-to-last set
of data). Since this is the best choice only on average for
this particular constraint ratio, it will not be the best choice
for every problem instance. Fig. 6b shows the complexity
for 50 different instances for this constraint ratio. The in-
stances have been ordered by the complexity for the open-
loop simplex size, 0.3. Clearly, there are a number of in-
stances where different choices of the simplex would yield
much better results. Therefore, a feedback law would be use-
ful here in order to fine tune the system for the particular in-
stance. When monitoring the on-line solver behavior, if the
number of function evaluations were growing too large, the
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simplex size could be changed. This type of feedback could
improve the solving time in cases like those on the right-hand
side of Fig. 6b.

Finally, if, over the course of many problems, the initial
open-loop estimate of the best simplex size is in error more
often than not, the adaptation portion of the solver control
comes into play. The Adaptation Module can monitor the be-
havior of the solver and compare it to that predicted by the
solver model (here, the median complexity given the con-
straint ratio and the choice of simplex size). If this predic-
tion appears to be incorrect, such as if the simplex size of 0.3
is yielding consistently worse results (and the feedback law
described above has to act frequently), adaptation can ad-
just the solver model accordingly. Therefore, it may happen
that, as more examples are gathered on-line, the estimate of
the complexity for the 0.3 solver increases enough that 0.3 is
no longer the preferred simplex size for problems with con-
straint ratio 6.6.

Thus, open-loop control implements parameter choices
based on a solver model or a set of rules, either of which
can be generated off-line based on analysis or statistical sam-
pling. The feedback control component performs on-line
corrections to compensate for individual instances deviat-
ing from the norm. Finally, the adaptive control component
serves to correct persistent errors in the solver model or rule
base, which can affect both the open-loopand feedback com-
ponents.

Conclusion

Constrained optimization is at the core of many embedded
applications. We are proposing a new framework for an (on-
line) adaptive constrained optimization service for such ap-
plications that addresses two central issues: problem distri-
bution and representation as well as adaptive algorithm se-
lection and tuning.

The adaptation framework presented here allows for, as
far as we are aware, the first principled classification of dif-
ferent techniques for adaptive control of problem solving.
Our current focus is on generating suitable problem ensem-
bles for complexity analysis, on a better understanding of the
relevant problem parameters that control or at least predict
complexity, and on cooperative solvers (Shanget al. 2001a;
Fromherzet al. 2001).

We believe that this work is relevant for a wide variety of
applications and is particularly important for large-scale, dy-
namic, embedded problems.
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