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Abstract

The design of a problem solver for a particular prob-
lem depends on the problem type, the system resources,
and the application requirements, as well as the specific
problem instance. The difficulty in matching a solver
to a problem can be ameliorated through the use of on-
line adaptive control of solving. In this approach, the
solver or problem representation selection and parame-
ters are defined appropriately to the problem structure,
environment models, and dynamic performance infor-
mation, and the rules or model underlying this deci-
sion are adapted dynamically. This paper presents a
general framework for the adaptive control of solving
and discusses the relationship of this framework both to
adaptive techniques in control theory and to the existing
adaptive solving literature. Experimental examples are
presented to illustrate the possible uses of solver con-
trol.

1 Introduction

Real-world problem solving typically involves select-
ing both a problem representation and a solving algo-
rithm. As is well known, both of these choices are crit-
ical to the success of the problem solution, and both
choices may depend on specific aspects of the applica-
tion problem, including operational and resource con-
straints. For example, some solvers may work better
on under-constrained problems, while others are bet-
ter choices for over-constrainedproblems. These issues
exist for combinatorial problems, constraint program-
ming problems, continuous problems, and mixed prob-
lems. They become particularly imposing for embed-
ded, large-scale problems. Often, application informa-
tion is only partially available at design time. For exam-
ple, one of the most promising applications for embed-
ded constraint solving is in model-predictive control of
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large-scale reconfigurable systems. Model-predictive
control is important for reconfiguration, as it is explic-
itly model-based and models can be easily swapped in
and out. This means, however, that the constraint prob-
lem to be solved may change over time.

One approach to this design issue is the use of adap-
tive control of problem solving. We define adaptive
control of solving as modifying the solver or the prob-
lem representation in response to problem structure,
resource limits, or on-line performance, and updating
the basis for this set of decisions adaptively over time.
Such adaptation allows a general solver to be used for
a wide variety of problems with varying time and re-
source constraints; the solver can choose the best tech-
niques for the circumstances and adjust its choices if
progress is not satisfactory.

Adaptive solving control makes use of a model or
set of rules concerning the relationship between vari-
ous problem, system, and application parameters and
best choices for solvers, heuristics, and problem trans-
formations. These choices define the control parame-
ters of the solver. This model or rule base also enables
the prediction of the behavior of the solver defined by
these control parameters. The predicted behavior can
be used to monitor the actual on-line behavior of the
solver and update the control parameters accordingly.
If the predicted behavior is consistently at odds with
the actual behavior, the accumulated performance feed-
back can be used to update the model or rule base itself.
This approach is similar to some commonly used adap-
tive control techniques in control theory.

In this paper, we introduce a framework for the
discussion of adaptive solving control systems. This
framework is discussed in Section 2. The framework
is motivated by a discussion of typical adaptive con-
trol techniques. This section also discusses some of
the literature on adaptive solving in the context of the
proposed framework. Section 3 gives some concrete,
experimental examples for situations in which the pro-
posed types of adaptive solving control would be use-
ful. Conclusions are presented in Section 4.

1



2 Adaptive Solving Strategies

In the field of control systems, the idea of on-line adap-
tation has already gone through many years of devel-
opment (e.g., [3, 17]). In standard adaptive control, it
is assumed that the controller has been designed off-
line, but may contain some uncertain parameters. Two
formulations are possible:indirect adaptive control, in
which the uncertain parameters are actually parameters
of an uncertain plant model that appear in the controller
design, ordirect adaptive control, in which the parame-
ters are simply controller parameters (the best choice of
which will still depend on the precise plant model). The
purpose ofadaptivecontrol is to adapt the uncertain pa-
rameters on-line based on the system performance.

2.1 Adaptive Control

The elements of a typical self-tuning adaptive control
system are shown in Figure 1. The system input is a ref-
erence signal,r, describing a goal for the system behav-
ior (a desired trajectory or set point, for example). The
controller supplies a control signalu to the plant, which
produces outputy. This plant output is fed back to the
controller, closing the control loop. This closed-loop
feedback control allows the controller to react to the ac-
tual output of the system,y, rather than giving inputs
based solely on its knowledge of the plant model and
of r. The portion of the diagram described so far, the
controller and the plant connected in a feedback loop,
is a complete control system in itself. The adaptation
is performed in the outer loop of the system as follows.
The control signalu and the plant outputy are fed into
the adaptation block. In a typical self-tuning regula-
tor, this block performs system estimation to more ac-
curately identify the plant model. The updated param-
eters in this model are either plugged directly into the
controller (direct adaptive control) or are used in a plant
model that in turn is used to define updated parameters
for the controller (indirect adaptive control). The out-
put of the update rule is the current estimateâ of the
best parameters. The adaptive control loop, which is
typically much slower acting than the feedback loop,
thus allows the system to improve its performance over
time.

One thing to note about the adaptive control frame-
work is that there are three levels of increasingly so-
phisticated control in the system:

1. Open-loop control. In a basic control system, the
controller could take the reference input and out-
put a control signal to the plant without any feed-
back. For such a feed-forward, open-loop control
system to produce the desired behavior, the con-
troller must be designed and tuned off-line using

Controller Plant
u

r
y

Adaptation
a

Figure 1: Typical Adaptive Control Scheme

a very accurate model of the plant. Any inaccu-
racies in the model or disturbances to the system
(noise or environmental disturbances) will not be
taken into account at run-time.

2. Feedback control. When the feedback loop is
added to the control system, the controller gains
the ability to react to the quality of the plant’s
output. The controller still must be designed and
tuned off-line, but the system has a much better
chance of performing as desired.

3. Adaptive control. In an adaptive system, the con-
troller is able to adapt to compensate for system-
atic performance errors caused by inaccurate plant
modeling. The controller is designed and tuned
off-line, but can be formulated parametrically in
terms of plant parameters that may be unknown or
imprecisely known, for example. The model be-
comes more accurate over time and can also adapt
to changes in the plant.

2.2 On-line Adaptive Control of
Solving

Based on this adaptive control viewpoint, we propose a
generic framework for the adaptive control of solving,
shown in Figure 2. This functional framework is useful
for structuring a principled discussion of adaptive solv-
ing approaches. Examples of possible implementations
and instantiations of its elements are provided in Sec-
tion 2.4.

The Solver Module plays the role of the plant to be
controlled. The Problem Transformer and the Con-
straint Solver both represent general systems, possibly
containing multiple algorithms and heuristics among
which to select, as well as tunable parameters. The al-
gorithms and parameters are selected with the inputu,
which contains bothuS anduT , provided by the Con-
trol Module. This module makes the solver and trans-
former algorithm selection and tuning decisions based
on the environment specification,E, the problem to
be solved,P , the on-line (during a run) behavior of
the solver,y, and some internal tuning parameters,a.
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Figure 2: Adaptive Solving System Framework. The
top diagram (a) shows an overview, and the bottom (b)
shows an expanded view of the Solver Module.

Including the on-line behavior of the solver as an in-
put to the Control Module allows the solver control to
have a feedback component. The Adaptation Module
has access toE, P , u, andy. Its role is to monitor
the behaviory of the Control Module/Problem Trans-
former/Constraint Solver system and adapt the parame-
ters,a, of the Control Module to improve performance.
Its outputs,̂a, are the current estimates of the optimal
Control Module parameters. The Adaptation Module
would typically act at a much slower time scale than
the feedback loop. As it actually modifies parameters of
the Control Module, its actions would generally not be
based on system behavior for a single problem or sub-
problem, as the feedback control would.

The environment,E, includes models of both the
system specifications and the application requirements.
Some of this environment information may also be
available to the solver directly. The problem specifi-
cation,P , is also supplied to the Problem Transformer.
The resulting problem transformation,P 0, is supplied
to the solver. The transformed solution to the problem,
S0, is then passed back through the transformer to re-
cover the solution,S, to the original problem.

Both the Control Module and the Adaptation Mod-

ule contain, either explicitly or implicitly, information
about the solver and its expected behavior. An exam-
ple of an implicit representation would be in the form
of a rule base. On the other hand, one way of explic-
itly representing the solver information is as a solver
model. A predictive model of expected solver behav-
ior would provide a basis for the Control Module to
make its solver and transformer parameter choices. The
AdaptationModule would use the predicted behavioras
a yardstick for measuring the true behavior,y. The con-
troller parametersa adjusted by the Adaptation Module
might then be parameters of the solver model.

2.3 Related Work on Adaptive
Solving

Previous approaches to adaptive solving for different
classes of problems have involved the first of the levels
of control enumerated above, and sometimes the sec-
ond, but not, as far as we are aware, the third. For ex-
ample, a number of systems, such as Minton’s MULTI-
TAC [20], Gratch and DeJong’s COMPOSER [13, 12],
or Caseauet al.’s meta-heuristic factory [7], use off-line
analysis to optimize algorithms or heuristics for a par-
ticular class of problems. This approach can be seen
as analogous to designing an open-loop controller, in
the sense that the selection and tuning of algorithms,
heuristics, and problem transformations (defined byuS
anduT in Figure 2) are not responsive to the on-line
performance of the system. The same is true for ap-
proaches such as that in [10], in which a model is
built off-line defining the relationship between parame-
ters describing the problem instance and the best set of
heuristics to use. There are several similar approaches
to on-line algorithm or heuristic selection [2, 18]. Al-
though these approaches probe the problem instance
on-line to determine the best algorithm or heuristics to
use, and thus take performance feedback into account
during this stage, once the selection is made, no further
feedback is used.

There are a number of approaches that make more
use of feedback-type information. Borrettet al. [5] use
on-line performance feedback to switch between algo-
rithms. Horvitzet al. [15] use it as part of a dynamic
restart policy. There are also a variety of approaches
that dynamically build up estimates of value or cost
functions to guide the search [4, 6, 21, 23]. These func-
tions are measurements of the “goodness” of particu-
lar states or action choices, and are developed on-line
using accumulated performance data. In the evolution-
ary algorithms community, a variety of techniques have
been used to adapt genetic operators and parameters
based on various performance measures [8]. Similar
approaches have been used with other techniques, such
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as simulated annealing [24].
Such techniques have also been used to modify the

problem representation. An “open-loop” off-line de-
sign approach for problem reformulation has been pro-
posed by Hnich and Flener [14]. Feedback approaches
have been used as well. For example, Pemberton and
Zhang [22] have used (open-loop) phase transition in-
formation and on-line branching estimation to identify
complex search problems and transform them into eas-
ier searches producing suboptimal solutions. Modifica-
tion of penalty weights or chromosome representations
in response to performance has also been explored in
the evolutionary algorithms community [8].

Although some of these approaches can make use of
a model of the relationship between the problem type
and the best solver parameters, and some can change
these parameters based on performance feedback, these
techniques do not have a mechanism for “remember-
ing” anything from experience, in terms of updating the
predictive model. Fink’s work [9], in which an open-
loop statistical model predicting success or failure of a
search is built up on-line over many search problems,
is an exception. In this sense, most of the work on
adaptive solving to date has in fact not been adaptive,
at least not in the control sense. In other words, these
approaches are not adaptive to the run-time environ-
ment of the solver, a crucial prerequisite for deploying
solvers in embedded applications.

2.4 Enabling Adaptive Solver
Control

The solver framework we have proposed incorporates
these three levels of solver control or adaptivity. We
suggest that including all three levels in a single sys-
tem can improve performance over a range of prob-
lems significantly. Many strategies that fit this adap-
tive framework are possible. For example, anopen-
loop strategycould be based on the size and constraint-
to-variable ratio (constraint ratio) of the problem.uS
could, in this case, indicate which solver (or solvers)
to use for the problem, for how many iterations or to
what depth to run it, which heuristics to use, and so on.
uT could define the granularity or a particular type of
continuous-to-discrete or discrete-to-continuous trans-
formation. This information could be encapsulated in a
solver model and would represent the best solution for
the average problem of a given size with a given con-
straint ratio. This model could be developed off-line
through a system like that shown in Figure 3. There,
an Analysis Module tests a Problem Ensemble on the
Solver Module with a variety of parametersu and mon-
itors the solver behaviory. The result of the analysis is
a set of configuration parameters learned for average or

Configuration parameters
for average and/or
important cases

Problem Ensemble

P S
u y

Solver Module

Analysis Module Solver Model

Figure 3: Analysis and Model Generation

important cases, which go into the Solver Model. The
basis or input metrics for classifying problems in the
model (constraint ratio, for example) can be determined
through understanding and analysis or through a learn-
ing approach such as that in Horvitzet al. [15].

The same approach can be used to design a system
that includes the second level of control sophistication,
performance feedback. The performance informationy
might be based on such measures as the on-line behav-
ior of an objective function, the elapsed time, the num-
ber of constraints satisfied, or the degree of constraint
violation, as well as solver state information such as the
number of no-goods, the degree of thrashing, and so on.
The off-line design of the Solver Model can incorporate
this performance information into the decision process
determininguS anduT . The model would also provide
an expected behavior with which to compare the actual
behavior,y. Then, as the solver is executed, the param-
etersuS anduT would be adjusted if the actual behav-
ior deviates from expected behavior, e.g., by increasing
search depth or iteration bounds.

Finally, such a system could also incorporate the
third level of control sophistication described above,
adaptation. The predictions of the Solver Model can be
used to identify persistent deviations from expected be-
havior over the long term. This information can then be
used by the Adaptation Module to modify the param-
eters of the model, making it more accurate. For ex-
ample, the constraint ratio threshold for choosing one
solver over another could be shifted if it emerged that
the incorrect solver was being chosen repeatedly. In ap-
plications such as model-predictivecontrol or dynamic,
on-line scheduling, similar problems are solved over
and over, so this type of on-line adaptation would be
quite beneficial in refining the solver control scheme.

One caveat is that the system for adaptive control of
solving must be continually exposed to the full range
of problems and environmental conditions for which it
is designed. In adaptive control systems, this require-
ment is referred to as the need for persistent excitation
[3]. If the problem and environment specifications do
not meet this criterion, the controller or model param-
etersa may get stuck at values that may appear satis-
factory for the subset of problems and environments to
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which the system has been exposed, but that may in fact
be sub-optimal. The exposure to the complete range of
E andP of interest must continue over time, as well,
so that the system does not “forget” what it has learned
earlier.

This section discussed the proposed framework for
the adaptive control of solving and gave some exam-
ples of control parametersu and behavioral outputsy.
The next section provides some specific examples por-
traying cases in which such adaptive control of solving
might be useful.

3 Examples
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Figure 4: Scheduling Problem with Cumulative Re-
sources Using Different Granularities. This figure
shows the average solution efficiency over 9 runs as a
function of time (the bottom plot is an expansion), us-
ing a CLP(FD) solver with an anytime search strategy.
The problem involves 10 tasks and a resource limit of
40. Other parameters are randomly generated. The task
length and horizon of the fine granularity are 5 times
those in the coarse one.

As discussed above, the literature is already in agree-
ment as to why the open-loop level of solving control
is useful, so here we will focus on some examples mo-
tivating the need for feedback and adaptive control of
solving. These examples indicate that on-line solving
might be improved by including feedback and adapta-
tion (in the control sense), but do not yet constitute con-
clusive evidence.

One example in the arena of time-aware solving in-
volves choosing a problem representation to maximize
the solving efficiency. Figure 4 shows data on solving
a standard scheduling problem [1] with two different
granularities for the time representation. The figure dis-
plays the average efficiency obtained by the solver as a

function of time. If enough time is available (as spec-
ified by the application requirements inE), the finer
granularity is clearly the better choice, as it allows for
a superior solution in the long run. If, however, less
time is available, the coarser granularity may be better,
as its solution quality has a faster initial rise. A time-
aware solver could make use of such data as part of its
solver model, and choose the granularity according to
the time available. This type of decision would form
part of an open-loop solver control scheme, according
to the framework described above.

In addition, as the time limit (deadline) for solving
approaches, the Control Module could monitor the im-
provement of the solution quality. If the quality is not
reaching the expected levels predicted by the solver
model, or if it is not improving fast enough, the Control
Module might elect to switch to a problem representa-
tion with lower granularity, in hopes of a steep perfor-
mance improvement, given the limited time remaining.
Such a scheme, based on monitoring the output of the
solver, falls in the category of feedback control of solv-
ing.

As a second example, consider a cooperative
global/local solver for continuous constraint satisfac-
tion problems [11] that uses the Nelder-Mead algorithm
[16] for global search followed by sequential quadratic
programming for local search (fminsearch andfmin-
con, respectively, in the Matlab Optimization Toolbox
[19]). Such a solver has several tuning parameters
that need to be set. One of these is the size of the
initial simplex for the Nelder-Mead algorithm, which
determines the search scale. As the constraint ratio
seems to be an important indicator of complexity for
this type of problem, the first step might be to analyze
the performance of various initial simplex sizes for
various constraint ratios, as is shown in Figure 5a for
a 25-variable problem. Such an analysis provides the
basis for a solver model, and as such the foundation for
an open-loop control scheme. This scheme specifies
that the simplex size should be chosen as the one
yielding the lowest median complexity given the
problem’s constraint ratio.

If, for instance, for a problem with constraint ratio
6.6, the simplex size were chosen based on Figure 5a,
a size of 0.3 would be selected (the lowest point in
the second-to-last set of data). Since this is the best
choice only on average for this particular constraint ra-
tio, it will not be the best choice for every problem in-
stance. Figure 5b shows the complexity for all 50 dif-
ferent instances for this constraint ratio. The instances
have been ordered by the complexity for the open-loop
simplex size, 0.3. Clearly, there are a number of in-
stances where different choices of the simplex would
yield much better results. Therefore, a feedback law
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Figure 5: Continuous Constraint Satisfaction Problems
with Different Initial Simplex Sizes. This figure shows
data on sum-of-sines type continuous constraint satis-
faction problems with 25 variables. The top diagram
shows the median (over 50 instances) of the number of
function evaluations required for problems with differ-
ent constraint ratios, using initial simplex sizess be-
tween 0.03 and 10. The bottom diagram shows, for a
single constraint ratio, the variation among all instances
and all simplex sizes.

would be useful here in order to fine tune the system
for the particular instance. When monitoring the on-
line solver behavior, if the number of function evalu-
ations were growing too large, the simplex size could
be changed. This type of feedback could improve the
solving time in cases like those on the right-hand side
of Figure 5b.

Finally, if, over the course of many problems, the ini-
tial open-loop estimate of the best simplex size is in er-
ror more often than not, the adaptation portion of the

solver control comes into play. The Adaptation Mod-
ule can monitor the behavior of the solver and com-
pare it to that predicted by the solver model (here, the
median complexity given the constraint ratio and the
choice of simplex size). If this prediction appears to
be incorrect, such as if the simplex size of 0.3 is yield-
ing consistently worse results (and the feedback law de-
scribed above has to act frequently), adaptation can ad-
just the solver model accordingly. Therefore, it may
happen that, as more examples are gathered on-line, the
estimate of the complexity for the 0.3 solver increases
enough that 0.3 is no longer the preferred simplex size
for problems with constraint ratio 6.6.

Thus, open-loop control implements parameter
choices based on a solver model or a set of rules, either
of which can be generated off-line based on analysis or
statistical sampling. The feedback control component
performs on-line corrections to compensate for indi-
vidual instances deviating from the norm. Finally, the
adaptive control component serves to correct persistent
errors in the solver model or rule base, which can affect
both the open-loop and feedback components.

4 Conclusion

The framework presented here is, as far as we are
aware, the first principled classification of different
techniques for adaptive control of problem solving.
The motivation and discussion of this adaptive solving
framework makes use of control theory as an analogi-
cal model. Most work on “adaptive solving” in the lit-
erature is not, in fact, adaptive in the control sense, but
rather incorporates only the open-loop or feedback lev-
els of solver control. We believe that the issues of prob-
lem representation and algorithm selection and tuning
addressed here exist for a wide variety of applications
and are particularly important for large-scale, dynamic,
embedded problems.
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