A Constraint-Based Model for High-Performance Real-Time Computing*

Christophe Guettier
AXLOG, 19-21, rue du 8 mai 1945
F-94110 Arcueil, France

Christophe. Guettier@axlog.fr

Abstract

The design of critical and real-time high-performance sys-
tems has become a complex matter. To tackle this complexity,
the whole problem formulation can be broken down into sev-
eral models. We present a system modelization that addresses
parallel computation. A partial solution, based on the Earli-
est Deadline First (EDF) algorithm, is emphasized. We show
in this paper how a Constraint Logic Programming (CLP) lan-
guage is able to construct models and the partial solution to
efficiently find solutions using a composite search process. In
order to fulfill the CLP requirements, we present the necessary
refinement steps of an EDF-based solution. We conclude with

various examples provided by an efficient CLP implementation.
Keywords

Parallel Processing, Real-Time Scheduling, Computation
Models, Constraint Logic Programming, Problem Solving

1 Introduction

Deficiencies in the design or dimensioning of a crit-
ical and real-time high-performance system can cause
definitive failures. Right now, it is necessary to prove
that for the whole system, real-time and architectural
size requirements are met. A relevant example of cor-
rect system dimension is ensuring that the processing
power is sufficient, and efficient. This is a tremen-
dous matter as the increasing complexity of systems
involves highly combinatoric design.

The lack of a method for correctly and provably
designing and dimensioning complex and/or critical
computer-based systems is the main reason why a
growing number of major failures are being experi-
enced by the industry [6, 7]. A proof-based sys-
tem engineering method, such as the TRDF! method,

*In the proceedings of the Intl. Conf. on Distributed and
Parallel Systems, Sept. 1999, Florida.

LTRDF is the French acronym of Real-Time Distributed
Fault-Tolerant Computing.

Jean-Francois Hermant
INRIA, Projet REFLECS, B.P. 105
F-78153 Le Chesnay Cedex, France

Jean-Francois.Hermant@inria.fr

involves correctness proof obligations. The TRDF
method allows translation of the (incomplete and/or
ambiguous) description of an application problem into
the specification of a computer science problem. It
also can produce the specification of a computer-based
system, along with proofs that all the decisions made
during the system design and the system dimension-
ing do satisfy the specification of the computer science
problem considered.

Meanwhile, the complexity of target architectures
has increased too. For instance, many functional units
can be available on a single chip organized in different
levels. Static techniques based on code transforma-
tions such as tiling [14], loop partitioning [15], or fine-
grain scheduling [13] have been improved to tackle the
resources or the latency of a program. However, com-
bining multiple resources and latency constraints in
order to address the global problem formulation means
solving NP-Hard problems with non-linear constraints
[13, 16].

In fact, getting a proven global solution is very dif-
ficult. The necessary combination of several hard sub-
problems leads to the concept of modelization. This
step extracts and adapts the invariants of system func-
tions, addressing the complexity of the system from
coarse to fine grain. So doing, solving the complete
problem requires combining different models. In an-
other context, this is similar to automatically solving
data-layout for High-Performance FORTRAN, by us-
ing 0 — 1 modeling associated to branch-and-bound
searches [12]. Other relevant results have shown the
efficiency of this approach to model and solve map-
ping problems in the VLSI domain [11, 18]. In fact,
to be efficient, it is necessary to distribute the solving
over several models using the compositionality prop-
erty. Thus, it is fundamental to preserve this property
during the modelization.

Stemming from logic programming, integer and
mathematical programming, Constraint Logic Pro-
gramming (CLP) languages are recognized as power-
ful tools to cope with difficult and large combinatorial

problems [20]. Underlying models of the approaches
presented below could easily be expressed using a CLP
language based on the simplex algorithm [19]. How-
ever the solving method would be restricted to a linear
existential part of the constraint language.

Recent results allow us to use less restricted lan-
guages defined on finite parts of N with all its classical
operators [23]. The power of this constraint language
design enables to tackle non linear constraints. We
claim that this language can support the modelization
of complex real-time parallel systems [11]. A model
is created with complex constraints that represent the
invariants of a sub-problem. Relations between mod-
els are conjunctions of constraints that maintain the
consistency of the global solution. The mathematical
composition of the models is transformed into con-
current search processes that can be controlled with
powerful logical operators [24].

To design and dimension complex systems, we must
solve for crucial parameters representing locality, par-
allelism, and periodicity. We present a solution based
on a block-cyclic computation distribution [15] us-
ing on-line Earliest Deadline First (EDF) scheduling.
The well-known corresponding algorithm belongs to
the class of deadline-driven scheduling algorithms and
dominates any fixed-priority scheduling algorithm [3].
In section § 2, we present the global problem specifi-
cation, the composite calculation is explained in § 3
and we present encouraging results using a CLP im-
plementation in § 4.

2 The Problem

In this section we specify the problem under consid-
eration according to the TRDF method [6, 7]. First,
we state the problem models (§ 2.1). The system is
modeled in a fairly standard fashion, taking into ac-
count the time model, the task model, the external
event types models, the computational model, and the
architectural model.

Second, we state the problem properties (§ 2.2):
the timeliness property. Models support parallelism
to speed-up task activations and executions. In that
way, it is possible to meet hard real-time constraints
that would not be satisfied with one processing ele-
ment.

2.1 Global Relational Model

Later in this paper, demonstrations are performed
with the assumptions explained in the following sec-
tions. The aim is to break down the global problem

into several sub-problems of lower complexity. A sub-
problem can be represented as a model due to its own
mathematical invariants. Finding a set of feasible so-
lutions to a given sub-problem requires the instantia-
tion of all the variables of the associated model. We
distinguish the initially instantiated models from the
models to be instantiated.

A set of relations, described in (§ 2.1.2), results from
this decomposition, and correlates between model
variables. It maintains the consistency of the different
local solutions and consequently, of a global feasible
solution (Fig. 1).

Time model Task model

Initially instantiated models

Relation (5) Relation (4)

Computational model

Models to be instantiated

Figure 1: The problem models

2.1.1 Initially Instantiated Models

Time Model Formally, we will use the continuous
time model, which is more general than the discrete
time model: ¢ € R*.

Task Model Consider a level of specification where
each task contains an independent local loop that in-
cludes an elementary computation (EC). Loop itera-
tions are executed each time the task is activated. This
loop could result from a fine-grain parallelization such
as tiling [17]. The set of activations may be repre-
sented as an infinite loop; so a task can be represented
by the following nested loop:

DO ¢;
DOALL j; =0, U; — 1
EC;(ti, ji)

where Vi, t; € N is the iterator that represents acti-
vations and Vi, j; € N is the local iterator. An el-
ementary duration Vi, n; € Rt is associated to the
elementary computation EC;.

There are no dependencies between the different
tasks.

2.1.2 Models to be Instantiated with Rela-
tions

These models are instantiated using an arithmetic rea-
soning involving automatic solving.

External Event Types Models Activation de-
mands of a task are constrained by a periodic or
sporadic arrival model [10]. Later in this paper, we
assume that activation demand dates and activation
dates of a task are the same.

Periodic Sporadic

The (t; + 1) activation date of a task i is denoted d(t;):

Vi,(lﬁi,o €N, V’i,(lﬁi,]’ eNjeN t;eN
t;

d(t;) = ¢io +t: 15, t; €N, d(t;) = Z ¢i,j + i1
i=o

The periodicity or sporadicity interval of a task ¢ is
denoted T; € N

The concrete or non-concrete attributes of a task i.

Concrete: ¢; o known.
Non-concrete: ¢; 9 unknown.

{¢i,j}jen known.
{®1,j}jen unknown.

The sporadic model is stronger than or equal to the
periodic model [10].

Sporadic O Periodic.

We consider in both cases the non-concrete form
where periods may be known natural numbers or char-
acterized by a lower and upper bound.

Computational Model Distribution formulations
have been widely used so far to represent loop trans-
formations or to express the compilation of mapping
directives [15, 17, 14]. For each task i, we use two
well-known forms of distribution in order to size the
granularity, the parallelism and the periodicity of the
task according to the whole problem.

The local loop j; can be simply partitioned [15]; it
gives local blocks and partially expresses the paral-
lelism. Let 0 < j; < U;, be the independent iterator,
we have the constraints:

Vi, dB; € N |ji:Bibi+)\i; 0<)\ < B;

where B; is the block partitioning parameter that we
must solve. The scalar \; represents the set of local
iterations and b; is a part of the processor identifier.

When they are independent, activations t; may be
parallelized due to a cyclic distribution. Paralleliza-
tion of activations brings more flexibility by stretch-
ing periods T;. The following formulation gives the
periodicity and partially the parallelism:

Vi, 3C; € N |ti =Ciki+ci, 0<¢; <C;

where C; is the cyclic parameter that we must solve.
The scalar ¢; represents the set of parallel activations,
the second part of the processor identifier. The scalar
K; is the new activation iterator.

That way, the computational model can be also
characterized as:

Synchronous: Upper and lower bounds on compu-
tational delays (e.g., time taken by a processor to
make a computational step) exist and their values are
known. The exact computational delays result from
the computation distribution constraints and are ex-
pressed with the number of local iterations times the
number of cycles to perform an elementary computa-
tion. The amount of local iterations is defined by the
parameter B;, so that the duration of the computation
can be given by:

Vi, In; € N |C; =n;BB; (1)

where the constant n; gives the elementary duration
for one iteration.

Parallel: The number of processors to map the en-
tire task is given by combining both cyclic distribution
and partitioning parameters. For each task i, the cou-
ple (¢;,b;) completely defines all the activations and
local iterations processed on one processor (Fig. 2),
so that we must consider the following constraints:

Vi,0§6i<ci,0§bi<’7%—‘. (2)

i

Architectural Model The architectural model is
SPMD “Single Process Multiple Data”, which means
that the different processors can execute only identical
processes in parallel. At coarse grain, it may be seen
as a centralized architecture, while at fine grain it is
parallel execution. The number of processors P seq is
upper-bounded by a constant P, 4.

El(-Pused; Pmaa:) | Pused S Pmaa: (3)

2.1.3 Relations

From a system engineering viewpoint, the set of the
resulting relations necessitates some crucial and criti-
cal trade-offs. The first issue is the parallelism and the
size of the architecture (§ 2.1.3). The second issue is
the periodicity / sporadicity and the available paral-
lelism (§ 2.1.3). These are required to efficiently solve
global problems such as the system dimensioning.

Relation between Computational and Architec-
tural models

The distribution of the computation for each task i
leads to the capacity resource constraints of the total
number of processors:

won(e[2]) = s

Relation between Computational and External
event types models

The new period, resulting from the cyclic partition-
ing is given by:

Vi, T; = T;'C; (5)

where T7 is the original period specified by a user.

proof

The activation date of a sequential task ¢ is given by the
function d(t;) =

Tioti, with the parallel form the dates of the C; activations
are the same

Ye; ‘ 0<¢ <Ci, Tik; = Tioti 7Tioci.

By using the cyclic partitioning formulation (2.1.2), we have:

Tik; = TiO(Cmi + Ci) — Tioci & Tk = TiOCmi T = TiOCi

end proof
2.2 Properties

Timeliness Tasks are assigned timeliness con-
straints: latest termination deadline. For every possi-
ble system run, every timeliness constraint is met. On
one hand, the value of deadlines does not depend on
the parallelism and may be known as a natural num-
ber or characterized by a lower and an upper bound:
Vi, D; € N

sketch of the proof

Let Tioti+ei be the end of the task execution in the sequential
form. The deadline property states: Tioti +e < Tioti + D;.
according to previous formulations (2.1.2,5, § 2.1.2), the parallel
execution of the tasks satisfies:

Tioti +e; — Tioci < Tioti + D; — Tioci & ik +e; <Tir; + D;

end of the sketch of the proof
On the other hand, the deadline satisfaction would
also depend on the parallelism (§ 4).

oo 000000 o
_l_3|0ck3 O O 0|l @ @@ @ @
: TR EIEEXINXXD
- Block2 o o o000 o

Parallel - I M

blocks RN EEXINXX)
 Blockl Oooleeele ee
: T EIEEXINMEXED
- BlockO

Cyclec-1 Cyclec+l Cyclec+2 t

Parallel activations

for cyclec
For a given task with U = 8, we have B = 2 and C = 3 . Finally,
as shown by the unfilled points, 12 elementary computations
will be performed in parallel.

Figure 2: Cyclic activations composed with block ex-
ecution

3 Solving the Problem

Once all the invariants have been expressed through
the modelization, it is possible to express the solution
to the problem. Following our approach, the calcula-
tion is done in two steps. The first one is based on
the Earliest Deadline First scheduling solution. The
algorithm feasibility is expressed due to necessary and
sufficient conditions that are out of the scope of CLP
capabilities. However, it is possible to extract suffi-
cient conditions that can be directly translated in a
CLP Language. The section § 3.1 explains how we
refine the solution in order to extract those sufficient
conditions.

The second step (§ 3.2) deals with the expression
and the solving in CLP of the global problem. It takes
into account the formulation of the EDF’s invariants,
in conjunction with the expression of the system spec-
ification. Then, a model-based technique can be ap-
plied using CLP features.

3.1 The Earliest Deadline First Partial
Solution

The Earliest Deadline First (EDF) scheduling al-
gorithm belongs to the class of on-line real-time
scheduling algorithms. There are at least two sub-
classes: deadline-driven scheduling algorithms and
fixed-priority scheduling algorithms. EDF belongs to
the former subclass and dominates any algorithm be-
longing to the latter subclass, such as, Highest Priority
First/Rate Monotonic (HPF/RM) or Highest Priority

First/Deadline Monotonic (HPF/DM) [3].

There are two main reasons why only EDF is cov-
ered in this paper. First, from a theoretical viewpoint,
we have the dominance property of EDF. Second, from
a practical viewpoint, the implementation of the suffi-
cient feasibility condition for EDF is fairly simple (see
further).

EDF works as follows [§8]. At any time ¢ € Rt if
there are pending tasks (i.e., tasks which have been
previously activated but which have not been fully
completed yet), EDF runs the task which has the ear-
liest absolute deadline. The processor is then said to
be busy. To decide between tasks having the same ab-
solute deadline, EDF makes use of a tie-breaking rule
(e.g., a lexicographical order). If there are no pending
tasks, EDF runs no task. The processor is then said
to be idle (Fig. 3).

[5o ooy ouvsoa o omm bsowl om om W owma

Figure 3: Example of a preemptive EDF schedule

The EDF schedule of the synchronous concrete traffic w €
7, where 7 is the traffic made up of the three periodic or
sporadic non-concrete tasks 7 (C1,Th,D1) = (2,7,5),
T2 (Cz,Tz,Dz) = (3,11,7), and T3 (Cg,Tg,Dg) =
(5,13, 10).

Later in this paper, we consider a periodic or spo-
radic non-concrete traffic 7, which is a set of n periodic
or sporadic non-concrete tasks 7;. We state feasibility
conditions for EDF with 7.

3.1.1 Basic Concepts
The workload W (t; T)

n

Witn) =S Wen) =Y || o ©
j=1 j J

=1

By definition, the workload W (t;7) is the amount
of time that is needed to run all the tasks whose acti-
vation times are in [0,¢) [2]. To give the expression of
W (t;), we consider the synchronous concrete traffic
werT.

The processor demand h(t;7)

n

hitT) =D hitim) = ilMax {0,1 + V _TDJ'J } c,.
(7)

By definition, the processor demand h(¢;7) is the
amount of time that is needed to run all the tasks
whose activation times and absolute deadlines are in
[0,t] [2]. To give the expression of h(t; T), we consider
the synchronous concrete traffic w € 7.

3.1.2 Feasibility Conditions for EDF

A necessary feasibility condition (NC)

Q

L<. (8)
J

~

n
T is feasible by EDF = Z
j=1

sketch of the proof

We derive the utilization factor U(7) from the workload
W (t;7):

U(r) = Limi—oo {@} - z::l %

By definition, the utilization factor U(7) is the fraction of
time that is needed to run all the tasks over [0,00), i.e., the
limit of W (¢;7)/t as t tends to infinity. If 7 is feasible by EDF,
then U(7) < 100%.

end of the sketch of the proof

A necessary and sufficient feasibility condition

(NSC)

7 is feasible by EDF < Vt € RT, h(t;7) <t; (9)

h(t;
7 is feasible by EDF & Sup;cp+~ { (t;7) } <1

sketch of the proof

By definition, the processor demand h(t;7) is the amount
of time that is needed to run all the tasks whose activation
times and absolute deadlines are in [0,t]. 7 is feasible by
EDF, if and only if, Vt € R, h(t;7) < t, i.e., if and only
if, Supgeg++ {h(t; 7)/t} < 100%.

end of the sketch of the proof

A sufficient feasibility condition (SC)

n

C
S i <= 7isfeasible by EDF. (11
2 Min{T;, D;} = = T 1§ feasible by (11)

sketch of the proof
Since Sup{f + g} < Sup{f} + Sup{g}, we have:

1 & - 1
SupteRJr*{? Zh(t; Tj)} < Z SUP R ++ {zh(t; Tj)} ;
j=1 j=1

h(t; T) n C;
Sul’te]ﬁt‘*’*{ S - J .
t Jz::I Min{Tj,D;}
1377, Cj/Min{T}, D;} < 100%, then 7 is feasible by EDF.
end of the sketch of the proof

Later in this paper, we only consider a sufficient feasi-
bility condition for EDF. Eq. 11 can be easily imple-
mented since its complexity is in O(n).

3.2 Automatic Solving Using CLP Lan-
guage

In our approach, the resulting problem formulation
— EDF constraint-based sufficient conditions in con-
junction with the general system modelization — per-
fectly matches the expressiveness of CLP and its solv-
ing capabilities. The distinction between the problem
formulation and the solving facilities allows one to find
solutions for various goals automatically.

3.2.1 Problem Formulation

A Constraint Logic Programming language can be
viewed as an extension of Logic Programming where
unification is replaced with constraint satisfaction.
Logical predicates can be constraints interpreted in
a mathematical algebra [21, 24] which is over the fi-
nite domains in our context : {P(N),+,—, >, =, x}.
Such a language enables the composition of predicates
through logical operators and quantifiers. This leads
to a more understandable, compositional and modular
problem representation. Model based computing is a
practical way to take advantage of those CLP proper-
ties [25, 22]. Problem variables and constrained pred-
icates are developed in order to express independently
complex models’ invariants. The consistency between
models is also maintained due to constrained predi-
cates over model variables. Those relations propagate
local solutions between models and trigger a backtrack
event whenever a constraint cannot be satisfied.

The EDF-partial solution is also expressed such
that its constraints are added to those of the global

modelization. The sufficient condition certifies that
the final solution belongs to the EDF-feasibility do-
main and thus must be stated. In so doing, the nec-
essary condition becomes redundant. However, this
condition is constraining the whole system in a differ-
ent way. Thus, stating the necessary condition enables
one to partition the search space more efficiently.

3.2.2 Concurrent Solving Over Models

We use generic constraint solving algorithms which
can handle constraint propagation and arithmetic rea-
soning. Each model is associated with a solving pro-
cess that searches for a solution to the corresponding
sub-problem. All solving processes are running simul-
taneously in order to find a global solution that sat-
isfies all the constraints of the problem. To insure
the consistency between model solutions and to rein-
force the concurrency between the solving processes,
CLP offers the powerful control operators Ask €& Tell.
The satisfaction operator Tell states a constraint to
the solver and the entailment operator Ask checks if a
constraint is already satisfied [24].

The Ask & Tell paradigm has been widely used to
compose complex constraints. In our system mod-
elization, we make use of the basic non linear prod-
uct constraint Y <], X; and the maximal constraint
Y = maz;(X;).

At the search process level, the Tell operator is
utilized to exchange partial solutions between mod-
els through relations. When two partial solutions are
not consistent, the system generates a backtrack event.
The Ask operator is used for the synchronization of the
global search. For example, associated to a variable of
a model, it triggers an associated search process when
a given property is known. Finally, using those op-
erators, global resolution strategies including domain
heuristics are designed to control and assist the com-
posite global search over all models.

4 Preliminary Results

The implementation, based on CLP, reflects exactly
the whole formulation and the resolution. According
to our system modelization (Fig. 1) and the EDF’s
invariants, we can use the prototype to solve for differ-
ent goals such as optimizing the number of processors
or finding the appropriate set of deadlines according
to the processing power. Figure (4) describes the task
models of an application, where we can note that some
deadlines are unfixed and correspond to application
parameters.

Task Elementary Initial Deadline | Parallel
Duration | Period (ms) Itera-
(ms) (ms) tions

Reading 12 42 22 1

Cursor 3 24 64 12

Slow 8 164 Dsu? 32

Motion

Sizing 1 42 Dg? 28

The task Reading performs a sequential read of a video from
a compact disk. The task Sizing adapts the video according
to the display context and task Cursor screens a pointer. A
selected part of the image can be displayed in Slow Motion.

Figure 4: Task Set Specification

As an example, we exhibit in Figure (5) the op-
timization of a deadline which represents the Slow
Motion fluidity. The system took three steps to find
this optimal solution. Thanks to constraint propaga-
tion over models, the solver has detected that the task
Cursor is critical for the optimization. Consequently,
the task’s period is automatically stretched from 24 ms
to 72 ms, using parallelism in order to favor the Slow
Motion deadline.

Goal specification : Maximal number of processors: 128,
Deadlines: Dg;zing < 40, Optimize the fluidity of the Slow
Motion

Result :

Task Activation Final Final Final
and Local | Period Dura- Dead-
Para,gelism T tion line

C D
Clg0)

Reading (1,1) 42 12 22

Cursor (3,12) 72 3 64

Slow (1,32) 164 8 34

Motion

Sizing (1,14) 42 2 20

g:.56

n
Total processors: 36, Load: Z
j=1 "7

Figure 5: A minimal value for the Slow Motion dead-
line

Using our implementation, other relevant optimiza-
tions have been performed and give interesting effects.
For example, in one hand the load minimization leads
obviously to the maximization of the parallelism (Fig.
6-b), while on the other hand the number of proces-
sors can be efficiently minimized (Fig. 6-a). In both
cases, the sufficient condition is always satisfied (third
column) and the final solution is optimal.

Initial Constraints : Maximal number of processors: 128,
Deadlines: Dsizing < 40, DsiowMotion < 164

a - architecture minimization
n n

C
Processors =L _
;Tj ;MW{TJ‘:DJ‘}

32 .50 .98
24 .49 .97
18 .52 1
16 .49 .99

b - load minimization

Processors =1 7]
27, | X, o)

32 50 98
36 A7 95
60 A4 95
36 38 98
60 35 98
36 32 1
60 29 1
60 26 99
60 25 99
8] 24 99

Figure 6: Optimization of system parameters

5 Conclusions and Further Work

As cost functions and execution constraints grow
complex, simple resolution schemes will no longer suf-
fice [13, 14]. To achieve global optimizations, we have
shown on a real-time and parallel system that divid-
ing the resolution from the modelization is a necessity.
This can be done thanks to a methodology such as
TRDF.

Under those considerations, Constraint Logic Pro-
gramming holds the appropriate level of expressiveness
to compose models and partial solutions such as the
EDF-scheduling policy. This way, the problem can be
solved globally, using concurrent constraint program-
ming mechanisms over models. However, this requires
preserving the compositionality property by finding
sufficient conditions, approximations or by refining the
model formulations.

As an example, we have considered the sufficient
feasibility condition for EDF. This is less precise than
the necessary and sufficient feasibility condition, but
it can be implemented more easily in CLP languages.
It defines a convex feasibility domain. The vertices
of this polyhedron are computable for free. In some
cases, it is possible to consider the necessary and suf-
ficient feasibility condition. It also defines a convex
feasibility domain. However, the vertices of this poly-
hedron are not computable for free. This work will be
presented in a forthcoming paper.

Future works will also introduce dependencies at

the instruction level or between coarser tasks, and thus
communication requirements. The scope of architec-
tures will also be extended by considering multi-level
partitioning schema. We are currently developing a
framework based on Constraint Logic Programming
where components are formal models extracted from
the state of the art of parallel and real-time computing.
We expect such a framework to be a helpful tool for de-
signing and sizing complex high-performance systems.

Acknowledgements

We thank Corinne Ancourt and Francois Irigoin for
their constructive comments and suggestions in improv-
ing this paper. We are deeply grateful to Karen and Tom
Conroy for their great help in revising the paper. Finally,
we would like to thank Thierry Billoir and Gérard Le Lann
for their continuous support.

References

[1] S.Baruah, R.R. Howell, L. Rosier, Algorithms and complez-
ity concerning the preemptive scheduling of periodic real-
time tasks on one processor, Real-Time Systems, 2, pp. 301-
324, 1990.

[2] S.Baruah, A. Mok, L. Rosier, Preemptively scheduling hard
real-time sporadic tasks on one processor, 11th Real-Time
Systems Symposium, pp. 182-190, 1990.

[3] M. Dertouzos, Control Robotics: the procedural control
of physical processors, Proceedings of the IFIP congress,
pp. 807-813, 1974.

[4] J.-F. Hermant, Analysis of Real-Time Distributed Schedul-
ing Algorithms, PhD Thesis, University of Paris VI, 1999.

[5] J.-F. Hermant, L. Leboucher, N. Rivierre, Real-time fized
and dynamic priority driven scheduling algorithms: theory
and experience, INRIA Research Report 3081, 142 p., 1996.

[6] G. Le Lann, Proof-Based System Engineering for Comput-
ing Systems, 1 Joint ESA/INCOSE Conference on Sys-
tems Engineering - The Future, IEE/ESA Pub., Vol. WPP-
130, 5a.4.1-5a.4.8., Nov. 11-13, 1997.

[7] G. Le Lann, Proof-Based System Engineering and Em-
bedded Systems, School on Embedded Systems, Veld-
hoven (NL), Nov. 1996, Lecture Notes in Computer Science,
Springer Verlag Pub., 40 p., to appear in 1998.

[8] C.L. Liu, J.W. Layland, Scheduling algorithms for multi-
programming in a hard real-time environment, Journal of
the Association for Computing Machinery, 20(1), pp. 40-
61, 1973.

[9] J.Y.T.Leung, M.L. Merril, A note on preemptive scheduling
of periodic, real-time tasks, Information processing Letters,
11(3), pp. 115-118, 1980.

[10] A.K. Mok, Fundamental design problems for the hard real-
time environments, PhD, MIT/LCS/TR-297, 1983.

[11] C. Ancourt, D. Barthou, C. Guettier, F. Irigoin, B. Jean-
net, J. Jourdan, and J. Mattioli, Automatic mapping of
signal processing applications onto parallel computers, In
Proc. ASAP 97, Zurich, July, 1997.

[12] R. Bixby, K. Kennedy, and U. Kremer, Automatic Data
Layout Using 0-1 Integer Programming, In Proc. PACT94,
Montreal, Canada, August, 1994.

[13] P. Feautrier, Fine-Grain Scheduling under Ressource Con-
straints, In 7" Workshop on Language and Compiler for
Parallel Computer, Ithaca, New-York, August, 1994.

[14] K. Hogstedt, L. Carter and J. Ferrante, Calculating the idle
time of a tiling, In Proc. ACM Symposium on Principles
Of Programming Languages, Paris, January, 1997.

[15] F. Irigoin and R. Triolet, Supernode Partitionning, In
Proc. 15th POPL, pages 319-328, San Diego, California,
January, 1988.

[16] U. Kremer, Optimal and Near-Optimal Solutions For Hard
Comgpilation Problems, Parallel Processing Letters 7(4),
World Scientific Publishing Company, 1997.

[17] A. W. Lim and M. S. Lam, Mazimizing Parallelism and
Minimizing Synchronisation with Affine Transforms , In
Proc. ACM Symposium on Principles Of Programming Lan-
guages, Paris, January, 1997.

[18] Jiirgen Teich and Lothar Thiele, Partioning Processor Ar-
rays under Ressource Constraints, In Journal of VLSI Sig-
nal Processing Systems, 15, pp. 5-21, 1997, Kliwer Aca-
demic Publishers, Boston.

[19] A. Colmerauer, Opening the Prolog III universe, , Bytes,
August 1987.

[20] M. Dincbas, P. Van Hentenryck and H. Simonis, Solv-
ing Large Combinatorial Problems in Logic Programming,
Journal of Logic Programming, Vol. 8, p.75-93, 1990.

[21] J. Jaffar and J-L Lassez, Constraint Logic Programming,
In Proc. of the 14t" ACM Symposium on Principles of Pro-
gramming Languages, Munich, January 1987.

[22] Jean Jourdan, Concurrence et coopération de modéles mul-
tiples dans les langages de contraintes CLP et CC : Vers
une méthodologie de programmation par modélisation. PhD
thesis, Université Denis Diderot, Paris VII, 1995.

[23] P. Van Hentenryck, V. Saraswat, and Y. Deville, De-
sign, Implementation and FEwvaluation of the Constraint
Language CC(FD), In Constraint Programming: Basics
and Trends, A. Podelski Ed., Chatillon-sur-Seine, Springer-
Verlag LNCCS 910, pp. 68-90, 1995.

[24] V. Saraswat, The Concurrent Logic Programming Lan-
guage CP: Denotational and Operational Semantics, In
Proc. of the 14t» ACM Symposium on Principles of Pro-
gramming Languages, Munich, January, 1987.

[25] V. Saraswat, D. Bobrow and D. Kleer, Infrastructure for
Model-based computing TR, Xerox PARC, Palo Alto Ca.
March 93

