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tThe design of 
riti
al and real-time high-performan
e sys-tems has be
ome a 
omplex matter. To ta
kle this 
omplexity,the whole problem formulation 
an be broken down into sev-eral models. We present a system modelization that addressesparallel 
omputation. A partial solution, based on the Earli-est Deadline First (EDF) algorithm, is emphasized. We showin this paper how a Constraint Logi
 Programming (CLP) lan-guage is able to 
onstru
t models and the partial solution toeÆ
iently �nd solutions using a 
omposite sear
h pro
ess. Inorder to ful�ll the CLP requirements, we present the ne
essaryre�nement steps of an EDF-based solution. We 
on
lude withvarious examples provided by an eÆ
ient CLP implementation.KeywordsParallel Pro
essing, Real-Time S
heduling, ComputationModels, Constraint Logi
 Programming, Problem Solving1 Introdu
tionDe�
ien
ies in the design or dimensioning of a 
rit-i
al and real-time high-performan
e system 
an 
ausede�nitive failures. Right now, it is ne
essary to provethat for the whole system, real-time and ar
hite
turalsize requirements are met. A relevant example of 
or-re
t system dimension is ensuring that the pro
essingpower is suÆ
ient, and eÆ
ient. This is a tremen-dous matter as the in
reasing 
omplexity of systemsinvolves highly 
ombinatori
 design.The la
k of a method for 
orre
tly and provablydesigning and dimensioning 
omplex and/or 
riti
al
omputer-based systems is the main reason why agrowing number of major failures are being experi-en
ed by the industry [6, 7℄. A proof-based sys-tem engineering method, su
h as the TRDF1 method,�In the pro
eedings of the Intl. Conf. on Distributed andParallel Systems, Sept. 1999, Florida.1TRDF is the Fren
h a
ronym of Real-Time DistributedFault-Tolerant Computing.

involves 
orre
tness proof obligations. The TRDFmethod allows translation of the (in
omplete and/orambiguous) des
ription of an appli
ation problem intothe spe
i�
ation of a 
omputer s
ien
e problem. Italso 
an produ
e the spe
i�
ation of a 
omputer-basedsystem, along with proofs that all the de
isions madeduring the system design and the system dimension-ing do satisfy the spe
i�
ation of the 
omputer s
ien
eproblem 
onsidered.Meanwhile, the 
omplexity of target ar
hite
tureshas in
reased too. For instan
e, many fun
tional units
an be available on a single 
hip organized in di�erentlevels. Stati
 te
hniques based on 
ode transforma-tions su
h as tiling [14℄, loop partitioning [15℄, or �ne-grain s
heduling [13℄ have been improved to ta
kle theresour
es or the laten
y of a program. However, 
om-bining multiple resour
es and laten
y 
onstraints inorder to address the global problem formulation meanssolving NP-Hard problems with non-linear 
onstraints[13, 16℄.In fa
t, getting a proven global solution is very dif-�
ult. The ne
essary 
ombination of several hard sub-problems leads to the 
on
ept of modelization. Thisstep extra
ts and adapts the invariants of system fun
-tions, addressing the 
omplexity of the system from
oarse to �ne grain. So doing, solving the 
ompleteproblem requires 
ombining di�erent models. In an-other 
ontext, this is similar to automati
ally solvingdata-layout for High-Performan
e FORTRAN, by us-ing 0 � 1 modeling asso
iated to bran
h-and-boundsear
hes [12℄. Other relevant results have shown theeÆ
ien
y of this approa
h to model and solve map-ping problems in the VLSI domain [11, 18℄. In fa
t,to be eÆ
ient, it is ne
essary to distribute the solvingover several models using the 
ompositionality prop-erty. Thus, it is fundamental to preserve this propertyduring the modelization.Stemming from logi
 programming, integer andmathemati
al programming, Constraint Logi
 Pro-gramming (CLP) languages are re
ognized as power-ful tools to 
ope with diÆ
ult and large 
ombinatorial



problems [20℄. Underlying models of the approa
hespresented below 
ould easily be expressed using a CLPlanguage based on the simplex algorithm [19℄. How-ever the solving method would be restri
ted to a linearexistential part of the 
onstraint language.Re
ent results allow us to use less restri
ted lan-guages de�ned on �nite parts of N with all its 
lassi
aloperators [23℄. The power of this 
onstraint languagedesign enables to ta
kle non linear 
onstraints. We
laim that this language 
an support the modelizationof 
omplex real-time parallel systems [11℄. A modelis 
reated with 
omplex 
onstraints that represent theinvariants of a sub-problem. Relations between mod-els are 
onjun
tions of 
onstraints that maintain the
onsisten
y of the global solution. The mathemati
al
omposition of the models is transformed into 
on-
urrent sear
h pro
esses that 
an be 
ontrolled withpowerful logi
al operators [24℄.To design and dimension 
omplex systems, we mustsolve for 
ru
ial parameters representing lo
ality, par-allelism, and periodi
ity. We present a solution basedon a blo
k-
y
li
 
omputation distribution [15℄ us-ing on-line Earliest Deadline First (EDF) s
heduling.The well-known 
orresponding algorithm belongs tothe 
lass of deadline-driven s
heduling algorithms anddominates any �xed-priority s
heduling algorithm [3℄.In se
tion x 2, we present the global problem spe
i�-
ation, the 
omposite 
al
ulation is explained in x 3and we present en
ouraging results using a CLP im-plementation in x 4.2 The ProblemIn this se
tion we spe
ify the problem under 
onsid-eration a

ording to the TRDF method [6, 7℄. First,we state the problem models (x 2.1). The system ismodeled in a fairly standard fashion, taking into a
-
ount the time model, the task model, the externalevent types models, the 
omputational model, and thear
hite
tural model.Se
ond, we state the problem properties (x 2.2):the timeliness property. Models support parallelismto speed-up task a
tivations and exe
utions. In thatway, it is possible to meet hard real-time 
onstraintsthat would not be satis�ed with one pro
essing ele-ment.2.1 Global Relational ModelLater in this paper, demonstrations are performedwith the assumptions explained in the following se
-tions. The aim is to break down the global problem

into several sub-problems of lower 
omplexity. A sub-problem 
an be represented as a model due to its ownmathemati
al invariants. Finding a set of feasible so-lutions to a given sub-problem requires the instantia-tion of all the variables of the asso
iated model. Wedistinguish the initially instantiated models from themodels to be instantiated.A set of relations, des
ribed in (x 2.1.2), results fromthis de
omposition, and 
orrelates between modelvariables. It maintains the 
onsisten
y of the di�erentlo
al solutions and 
onsequently, of a global feasiblesolution (Fig. 1).
Initially instantiated models
Models to be instantiated

Time model Task model
External event types models Architectural model

Computational modelRelation (5) Relation (4)
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Figure 1: The problem models2.1.1 Initially Instantiated ModelsTime Model Formally, we will use the 
ontinuoustime model, whi
h is more general than the dis
retetime model: t 2 R+ .Task Model Consider a level of spe
i�
ation whereea
h task 
ontains an independent lo
al loop that in-
ludes an elementary 
omputation (EC). Loop itera-tions are exe
uted ea
h time the task is a
tivated. Thisloop 
ould result from a �ne-grain parallelization su
has tiling [17℄. The set of a
tivations may be repre-sented as an in�nite loop; so a task 
an be representedby the following nested loop:DO tiDOALL ji = 0; Ui � 1ECi(ti; ji)where 8i; ti 2 N is the iterator that represents a
ti-vations and 8i; ji 2 N is the lo
al iterator. An el-ementary duration 8i; ni 2 R+ is asso
iated to theelementary 
omputation ECi.There are no dependen
ies between the di�erenttasks.



2.1.2 Models to be Instantiated with Rela-tionsThese models are instantiated using an arithmeti
 rea-soning involving automati
 solving.External Event Types Models A
tivation de-mands of a task are 
onstrained by a periodi
 orsporadi
 arrival model [10℄. Later in this paper, weassume that a
tivation demand dates and a
tivationdates of a task are the same.Periodi
 Sporadi
The (ti + 1)th a
tivation date of a task i is denoted d(ti):8i; �i;0 2 N , 8i; �i;j 2 N; j 2 N; ti 2 Nd(ti) = �i;0 + tiTi; ti 2 N , d(ti) = tiXj=0 �i;j + tiTiThe periodi
ity or sporadi
ity interval of a task i isdenoted Ti 2 NThe 
on
rete or non-
on
rete attributes of a task i.Con
rete: �i;0 known. f�i;jgj2N known.Non-
on
rete: �i;0 unknown. f�i;jgj2N unknown.The sporadi
 model is stronger than or equal to theperiodi
 model [10℄.Sporadi
 � Periodi
:We 
onsider in both 
ases the non-
on
rete formwhere periods may be known natural numbers or 
har-a
terized by a lower and upper bound.Computational Model Distribution formulationshave been widely used so far to represent loop trans-formations or to express the 
ompilation of mappingdire
tives [15, 17, 14℄. For ea
h task i, we use twowell-known forms of distribution in order to size thegranularity, the parallelism and the periodi
ity of thetask a

ording to the whole problem.The lo
al loop ji 
an be simply partitioned [15℄; itgives lo
al blo
ks and partially expresses the paral-lelism. Let 0 � ji < Ui, be the independent iterator,we have the 
onstraints:8i; 9Bi 2 N jji = Bibi + �i; 0 � �i < Bi

where Bi is the blo
k partitioning parameter that wemust solve. The s
alar �i represents the set of lo
aliterations and bi is a part of the pro
essor identi�er.When they are independent, a
tivations ti may beparallelized due to a 
y
li
 distribution. Paralleliza-tion of a
tivations brings more 
exibility by stret
h-ing periods Ti. The following formulation gives theperiodi
ity and partially the parallelism:8i; 9Ci 2 N jti = Ci�i + 
i; 0 � 
i < Ciwhere Ci is the 
y
li
 parameter that we must solve.The s
alar 
i represents the set of parallel a
tivations,the se
ond part of the pro
essor identi�er. The s
alar�i is the new a
tivation iterator.That way, the 
omputational model 
an be also
hara
terized as:Syn
hronous: Upper and lower bounds on 
ompu-tational delays (e.g., time taken by a pro
essor tomake a 
omputational step) exist and their values areknown. The exa
t 
omputational delays result fromthe 
omputation distribution 
onstraints and are ex-pressed with the number of lo
al iterations times thenumber of 
y
les to perform an elementary 
omputa-tion. The amount of lo
al iterations is de�ned by theparameter Bi, so that the duration of the 
omputation
an be given by:8i; 9ni 2 N jCi = niBi (1)where the 
onstant ni gives the elementary durationfor one iteration.Parallel: The number of pro
essors to map the en-tire task is given by 
ombining both 
y
li
 distributionand partitioning parameters. For ea
h task i, the 
ou-ple (
i; bi) 
ompletely de�nes all the a
tivations andlo
al iterations pro
essed on one pro
essor (Fig. 2),so that we must 
onsider the following 
onstraints:8i; 0 � 
i < Ci; 0 � bi < �UiBi � : (2)Ar
hite
tural Model The ar
hite
tural model isSPMD \Single Pro
ess Multiple Data", whi
h meansthat the di�erent pro
essors 
an exe
ute only identi
alpro
esses in parallel. At 
oarse grain, it may be seenas a 
entralized ar
hite
ture, while at �ne grain it isparallel exe
ution. The number of pro
essors Pused isupper-bounded by a 
onstant Pmax.9(Pused; Pmax) j Pused � Pmax (3)



2.1.3 RelationsFrom a system engineering viewpoint, the set of theresulting relations ne
essitates some 
ru
ial and 
riti-
al trade-o�s. The �rst issue is the parallelism and thesize of the ar
hite
ture (x 2.1.3). The se
ond issue isthe periodi
ity / sporadi
ity and the available paral-lelism (x 2.1.3). These are required to eÆ
iently solveglobal problems su
h as the system dimensioning.Relation between Computational and Ar
hite
-tural modelsThe distribution of the 
omputation for ea
h task ileads to the 
apa
ity resour
e 
onstraints of the totalnumber of pro
essors:maxi �Ci �UiBi �� = Pused (4)Relation between Computational and Externalevent types modelsThe new period, resulting from the 
y
li
 partition-ing is given by: 8i; Ti = T 0i Ci (5)where T 0i is the original period spe
i�ed by a user.proofThe a
tivation date of a sequential task i is given by thefun
tion d(ti) =T 0i ti, with the parallel form the dates of the Ci a
tivationsare the same8
i j 0 � 
i < Ci; Ti�i = T 0i ti � T 0i 
i.By using the 
y
li
 partitioning formulation (2.1.2), we have:Ti�i = T 0i (Ci�i + 
i)� T 0i 
i , Ti�i = T 0i Ci�i , Ti = T 0i Ciend proof2.2 PropertiesTimeliness Tasks are assigned timeliness 
on-straints: latest termination deadline. For every possi-ble system run, every timeliness 
onstraint is met. Onone hand, the value of deadlines does not depend onthe parallelism and may be known as a natural num-ber or 
hara
terized by a lower and an upper bound:8i; Di 2 Nsket
h of the proofLet T 0i ti+ei be the end of the task exe
ution in the sequentialform. The deadline property states: T 0i ti + ei � T 0i ti + Di.a

ording to previous formulations (2.1.2,5, x 2.1.2), the parallelexe
ution of the tasks satis�es:T 0i ti + ei � T 0i 
i � T 0i ti +Di � T 0i 
i , Ti�i + ei � Ti�i +Diend of the sket
h of the proofOn the other hand, the deadline satisfa
tion wouldalso depend on the parallelism (x 4).
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Cycle c+1 Cycle c+2Cycle c-1For a given task with U = 8, we have B = 2 and C = 3 . Finally,as shown by the un�lled points, 12 elementary 
omputationswill be performed in parallel.Figure 2: Cy
li
 a
tivations 
omposed with blo
k ex-e
ution3 Solving the ProblemOn
e all the invariants have been expressed throughthe modelization, it is possible to express the solutionto the problem. Following our approa
h, the 
al
ula-tion is done in two steps. The �rst one is based onthe Earliest Deadline First s
heduling solution. Thealgorithm feasibility is expressed due to ne
essary andsuÆ
ient 
onditions that are out of the s
ope of CLP
apabilities. However, it is possible to extra
t suÆ-
ient 
onditions that 
an be dire
tly translated in aCLP Language. The se
tion x 3.1 explains how were�ne the solution in order to extra
t those suÆ
ient
onditions.The se
ond step (x 3.2) deals with the expressionand the solving in CLP of the global problem. It takesinto a

ount the formulation of the EDF's invariants,in 
onjun
tion with the expression of the system spe
-i�
ation. Then, a model-based te
hnique 
an be ap-plied using CLP features.3.1 The Earliest Deadline First PartialSolutionThe Earliest Deadline First (EDF) s
heduling al-gorithm belongs to the 
lass of on-line real-times
heduling algorithms. There are at least two sub-
lasses: deadline-driven s
heduling algorithms and�xed-priority s
heduling algorithms. EDF belongs tothe former sub
lass and dominates any algorithm be-longing to the latter sub
lass, su
h as, Highest PriorityFirst/Rate Monotoni
 (HPF/RM) or Highest Priority



First/Deadline Monotoni
 (HPF/DM) [3℄.There are two main reasons why only EDF is 
ov-ered in this paper. First, from a theoreti
al viewpoint,we have the dominan
e property of EDF. Se
ond, froma pra
ti
al viewpoint, the implementation of the suÆ-
ient feasibility 
ondition for EDF is fairly simple (seefurther).EDF works as follows [8℄. At any time t 2 R+ , ifthere are pending tasks (i.e., tasks whi
h have beenpreviously a
tivated but whi
h have not been fully
ompleted yet), EDF runs the task whi
h has the ear-liest absolute deadline. The pro
essor is then said tobe busy. To de
ide between tasks having the same ab-solute deadline, EDF makes use of a tie-breaking rule(e.g., a lexi
ographi
al order). If there are no pendingtasks, EDF runs no task. The pro
essor is then saidto be idle (Fig. 3).
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Figure 3: Example of a preemptive EDF s
heduleThe EDF s
hedule of the syn
hronous 
on
rete traÆ
 ! 2� , where � is the traÆ
 made up of the three periodi
 orsporadi
 non-
on
rete tasks �1 : (C1; T1; D1) = (2; 7; 5),�2 : (C2; T2; D2) = (3; 11; 7), and �3 : (C3; T3; D3) =(5; 13; 10).Later in this paper, we 
onsider a periodi
 or spo-radi
 non-
on
rete traÆ
 � , whi
h is a set of n periodi
or sporadi
 non-
on
rete tasks �j . We state feasibility
onditions for EDF with � .3.1.1 Basi
 Con
eptsThe workload W (t; �)W (t; �) = nXj=1W (t; �j) = nXj=1 � tTj �Cj : (6)By de�nition, the workload W (t; �) is the amountof time that is needed to run all the tasks whose a
ti-vation times are in [0; t) [2℄. To give the expression ofW (t; �), we 
onsider the syn
hronous 
on
rete traÆ
! 2 � .

The pro
essor demand h(t; �)h(t; �) = nXj=1 h(t; �j) = nXj=1Max�0; 1 + � t�DjTj ��Cj :(7)By de�nition, the pro
essor demand h(t; �) is theamount of time that is needed to run all the taskswhose a
tivation times and absolute deadlines are in[0; t℄ [2℄. To give the expression of h(t; �), we 
onsiderthe syn
hronous 
on
rete traÆ
 ! 2 � .3.1.2 Feasibility Conditions for EDFA ne
essary feasibility 
ondition (NC)� is feasible by EDF) nXj=1 CjTj � 1: (8)sket
h of the proofWe derive the utilization fa
tor U(�) from the workloadW (t; �): U(�) = Limt!1 �W (t; �)t � = nXj=1 CjTj :By de�nition, the utilization fa
tor U(�) is the fra
tion oftime that is needed to run all the tasks over [0;1), i.e., thelimit of W (t; �)=t as t tends to in�nity. If � is feasible by EDF,then U(�) � 100%.end of the sket
h of the proofA ne
essary and suÆ
ient feasibility 
ondition(NSC)� is feasible by EDF, 8t 2 R+ ; h(t; �) � t; (9)� is feasible by EDF, Supt2R+��h(t; �)t � � 1:(10)sket
h of the proofBy de�nition, the pro
essor demand h(t; �) is the amountof time that is needed to run all the tasks whose a
tivationtimes and absolute deadlines are in [0; t℄. � is feasible byEDF, if and only if, 8t 2 R+; h(t; �) � t, i.e., if and onlyif, Supt2R+� fh(t; �)=tg � 100%.end of the sket
h of the proof



A suÆ
ient feasibility 
ondition (SC)nXj=1 CjMinfTj; Djg � 1) � is feasible by EDF: (11)sket
h of the proofSin
e Supff + gg � Supffg+ Supfgg, we have:Supt2R+��1t nXj=1h(t; �j)� � nXj=1Supt2R+��1t h(t; �j)� ;Supt2R+��h(t; �)t � � nXj=1 CjMinfTj ;Djg :IfPnj=1 Cj=MinfTj ;Djg � 100%, then � is feasible by EDF.end of the sket
h of the proofLater in this paper, we only 
onsider a suÆ
ient feasi-bility 
ondition for EDF. Eq. 11 
an be easily imple-mented sin
e its 
omplexity is in O(n).3.2 Automati
 Solving Using CLP Lan-guageIn our approa
h, the resulting problem formulation{ EDF 
onstraint-based suÆ
ient 
onditions in 
on-jun
tion with the general system modelization { per-fe
tly mat
hes the expressiveness of CLP and its solv-ing 
apabilities. The distin
tion between the problemformulation and the solving fa
ilities allows one to �ndsolutions for various goals automati
ally.3.2.1 Problem FormulationA Constraint Logi
 Programming language 
an beviewed as an extension of Logi
 Programming whereuni�
ation is repla
ed with 
onstraint satisfa
tion.Logi
al predi
ates 
an be 
onstraints interpreted ina mathemati
al algebra [21, 24℄ whi
h is over the �-nite domains in our 
ontext : fP(N);+;�; >;=; �g.Su
h a language enables the 
omposition of predi
atesthrough logi
al operators and quanti�ers. This leadsto a more understandable, 
ompositional and modularproblem representation. Model based 
omputing is apra
ti
al way to take advantage of those CLP proper-ties [25, 22℄. Problem variables and 
onstrained pred-i
ates are developed in order to express independently
omplex models' invariants. The 
onsisten
y betweenmodels is also maintained due to 
onstrained predi-
ates over model variables. Those relations propagatelo
al solutions between models and trigger a ba
ktra
kevent whenever a 
onstraint 
annot be satis�ed.The EDF-partial solution is also expressed su
hthat its 
onstraints are added to those of the global

modelization. The suÆ
ient 
ondition 
erti�es thatthe �nal solution belongs to the EDF-feasibility do-main and thus must be stated. In so doing, the ne
-essary 
ondition be
omes redundant. However, this
ondition is 
onstraining the whole system in a di�er-ent way. Thus, stating the ne
essary 
ondition enablesone to partition the sear
h spa
e more eÆ
iently.3.2.2 Con
urrent Solving Over ModelsWe use generi
 
onstraint solving algorithms whi
h
an handle 
onstraint propagation and arithmeti
 rea-soning. Ea
h model is asso
iated with a solving pro-
ess that sear
hes for a solution to the 
orrespondingsub-problem. All solving pro
esses are running simul-taneously in order to �nd a global solution that sat-is�es all the 
onstraints of the problem. To insurethe 
onsisten
y between model solutions and to rein-for
e the 
on
urren
y between the solving pro
esses,CLP o�ers the powerful 
ontrol operators Ask & Tell.The satisfa
tion operator Tell states a 
onstraint tothe solver and the entailment operator Ask 
he
ks if a
onstraint is already satis�ed [24℄.The Ask & Tell paradigm has been widely used to
ompose 
omplex 
onstraints. In our system mod-elization, we make use of the basi
 non linear prod-u
t 
onstraint Y �QiXi and the maximal 
onstraintY = maxi(Xi).At the sear
h pro
ess level, the Tell operator isutilized to ex
hange partial solutions between mod-els through relations. When two partial solutions arenot 
onsistent, the system generates a ba
ktra
k event.The Ask operator is used for the syn
hronization of theglobal sear
h. For example, asso
iated to a variable ofa model, it triggers an asso
iated sear
h pro
ess whena given property is known. Finally, using those op-erators, global resolution strategies in
luding domainheuristi
s are designed to 
ontrol and assist the 
om-posite global sear
h over all models.4 Preliminary ResultsThe implementation, based on CLP, re
e
ts exa
tlythe whole formulation and the resolution. A

ordingto our system modelization (Fig. 1) and the EDF'sinvariants, we 
an use the prototype to solve for di�er-ent goals su
h as optimizing the number of pro
essorsor �nding the appropriate set of deadlines a

ordingto the pro
essing power. Figure (4) des
ribes the taskmodels of an appli
ation, where we 
an note that somedeadlines are un�xed and 
orrespond to appli
ationparameters.



Task ElementaryDuration(ms) InitialPeriod(ms) Deadline(ms) ParallelItera-tionsReading 12 42 22 1Cursor 3 24 64 12SlowMotion 8 164 DSM? 32Sizing 1 42 DS? 28The task Reading performs a sequential read of a video froma 
ompa
t disk. The task Sizing adapts the video a

ordingto the display 
ontext and task Cursor s
reens a pointer. Asele
ted part of the image 
an be displayed in Slow Motion.Figure 4: Task Set Spe
i�
ationAs an example, we exhibit in Figure (5) the op-timization of a deadline whi
h represents the SlowMotion 
uidity. The system took three steps to �ndthis optimal solution. Thanks to 
onstraint propaga-tion over models, the solver has dete
ted that the taskCursor is 
riti
al for the optimization. Consequently,the task's period is automati
ally stret
hed from 24msto 72 ms, using parallelism in order to favor the SlowMotion deadline.Goal spe
i�
ation : Maximal number of pro
essors: 128,Deadlines: DSizing � 40, Optimize the 
uidity of the SlowMotionResult :Task A
tivationand Lo
alParallelism(C,�UB �) FinalPeriodT FinalDura-tionC FinalDead-lineDReading (1,1) 42 12 22Cursor (3,12) 72 3 64SlowMotion (1,32) 164 8 34Sizing (1,14) 42 2 20Total pro
essors: 36, Load: nXj=1 CjTj = :56Figure 5: A minimal value for the Slow Motion dead-lineUsing our implementation, other relevant optimiza-tions have been performed and give interesting e�e
ts.For example, in one hand the load minimization leadsobviously to the maximization of the parallelism (Fig.6-b), while on the other hand the number of pro
es-sors 
an be eÆ
iently minimized (Fig. 6-a). In both
ases, the suÆ
ient 
ondition is always satis�ed (third
olumn) and the �nal solution is optimal.

Initial Constraints : Maximal number of pro
essors: 128,Deadlines: DSizing � 40, DSlowMotion � 164a - ar
hite
ture minimizationPro
essors nXj=1 CjTj nXj=1 CjMinfTj ;Djg32 .50 .9824 .49 .9718 .52 116 .49 .99b - load minimizationPro
essors nXj=1 CjTj nXj=1 CjMinfTj ;Djg32 .50 .9836 .47 .9560 .44 .9536 .38 .9860 .35 .9836 .32 160 .29 160 .26 .9960 .25 .9984 .24 .99Figure 6: Optimization of system parameters5 Con
lusions and Further WorkAs 
ost fun
tions and exe
ution 
onstraints grow
omplex, simple resolution s
hemes will no longer suf-�
e [13, 14℄. To a
hieve global optimizations, we haveshown on a real-time and parallel system that divid-ing the resolution from the modelization is a ne
essity.This 
an be done thanks to a methodology su
h asTRDF.Under those 
onsiderations, Constraint Logi
 Pro-gramming holds the appropriate level of expressivenessto 
ompose models and partial solutions su
h as theEDF-s
heduling poli
y. This way, the problem 
an besolved globally, using 
on
urrent 
onstraint program-ming me
hanisms over models. However, this requirespreserving the 
ompositionality property by �ndingsuÆ
ient 
onditions, approximations or by re�ning themodel formulations.As an example, we have 
onsidered the suÆ
ientfeasibility 
ondition for EDF. This is less pre
ise thanthe ne
essary and suÆ
ient feasibility 
ondition, butit 
an be implemented more easily in CLP languages.It de�nes a 
onvex feasibility domain. The verti
esof this polyhedron are 
omputable for free. In some
ases, it is possible to 
onsider the ne
essary and suf-�
ient feasibility 
ondition. It also de�nes a 
onvexfeasibility domain. However, the verti
es of this poly-hedron are not 
omputable for free. This work will bepresented in a forth
oming paper.Future works will also introdu
e dependen
ies at



the instru
tion level or between 
oarser tasks, and thus
ommuni
ation requirements. The s
ope of ar
hite
-tures will also be extended by 
onsidering multi-levelpartitioning s
hema. We are 
urrently developing aframework based on Constraint Logi
 Programmingwhere 
omponents are formal models extra
ted fromthe state of the art of parallel and real-time 
omputing.We expe
t su
h a framework to be a helpful tool for de-signing and sizing 
omplex high-performan
e systems.A
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