Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, spring 2009
15t Lecture, Jan. 12t

Instructors:
Gregory Kesden and Markus Puschel

The course that gives CMU its “Zip”!

Carnegie Mellon

Overview

m Course theme

m Five realities

m How the course fits into the CS/ECE curriculum
m Logistics

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality

m Most CS courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
"= Need to understand details of underlying implementations

m Useful outcomes
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
= Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Carnegie Mellon

Great Reality #1:
Int’s are not Integers, Float’s are not Reals

m Example 1:1s x2 2 0?
" Float’s: Yes!
" |nt’s:
= 40000 * 40000 --> 1600000000
= 50000 * 50000 -->??

m Example2:Is(x+y)+z = x+(y+2)?
= Unsigned & Signed Int’s: Yes!
= Float’s:

- (1e20+-1e20) + 3.14 --> 3.14
« 120+ (-1€20 + 3.14) --> ??

Carnegie Mellon

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE] ;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find
vulnerabilities in programs

Carnegie Mellon

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy from kernel (mybuf, MSIZE) ;
printf (“$s\n”, mybuf) ;

Carnegie Mellon

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, 1len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy from kernel (mybuf, -MSIZE) ;

Carnegie Mellon

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I a I”

m Cannot assume all “usual” mathematical properties
= Due to finiteness of representations
" |nteger operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation

"= Need to understand which abstractions apply in which contexts

" |mportant issues for compiler writers and serious application
programmers

Carnegie Mellon

Great Reality #2:
You've Got to Know Assembly

m Chances are, you’ll never write program in assembly

= Compilers are much better & more patient than you are

m But: Understanding assembly key to machine-level
execution model

= Behavior of programs in presence of bugs
= High-level language model breaks down

® Tuning program performance
= Understand optimizations done/not done by the compiler
= Understanding sources of program inefficiency

" |mplementing system software
= Compiler has machine code as target
= Operating systems must manage process state

" Creating / fighting malware
= x86 assembly is the language of choice!

Carnegie Mellon

Assembly Code Example

m Time Stamp Counter

= Special 64-bit register in Intel-compatible machines
" |ncremented every clock cycle
= Read with rdtsc instruction

m Application

= Measure time (in clock cycles) required by procedure

double t;

start counter();

P();

t = get counter();

printf ("P required %f clock cycles\n”, t);

Carnegie Mellon

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility
m Inserts assembly code into machine code generated by

compiler
static unsigned cyc hi = 0;
static unsigned cyc lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.
*/
void access_counter (unsigned *hi, unsigned *1lo)
{
asm('"rdtsc, movl $%$%edx, %0, movl %$%eax, 31"
Nep ! (*hl) , Ne=p" (*10)

"$edx", "%eax");

Carnegie Mellon

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
" |t must be allocated and managed
= Many applications are memory dominated

m Memory referencing bugs especially pernicious
= Effects are distant in both time and space

m Memory performance is not uniform

® Cache and virtual memory effects can greatly affect program
performance

= Adapting program to characteristics of memory system can lead to
major speed improvements

Carnegie Mellon

Memory Referencing Bug Example

double fun(int 1)
{
volatile double d[l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d4d[0];

fun(0) —> 3.14

fun(l) —> 3.14

fun(2) —> 3.1399998664856

fun(3) —> 2.00000061035156

fun(4) —> 3.14, then segmentation fault

Carnegie Mellon

Memory Referencing Bug Example

double fun(int 1i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) > 3.14
fun(l) -—> 3.14
fun(2) -> 3.1399998664856
fun(3) > 2.00000061035156
fun(4) —> 3.14, then segmentation fault
Explanation: saved state (4 O
d7 .. d4 3
Location accessed b
d3 .. do 2 '€ y
fun (1)
a[l] 1
a[0] 0 _

Carnegie Mellon

Memory Referencing Errors

m Cand C++ do not provide any memory protection
= Qut of bounds array references
® |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java or ML

" Understand what possible interactions may occur
= Use or develop tools to detect referencing errors

Carnegie Mellon

Memory System Performance Example

void copyij(int src[2048] [2048], void copyji(int src[2048] [2048],
int dst[2048] [2048]) int dst[2048] [2048])
{ {
int i,3; int i,3;
for (i = 0; 1 < 2048; i++) — > for (j = 0; j < 2048; j++)
For (5 = 0; 5 < 2048; j++) ——b=di for (i = 0; i < 2048; it++)
dst[i] [J] = src[i] []]~ dst[i] [J] = src[i][]]’

} }

21 times slower
(Pentium 4)

m Hierarchical memory organization
m Performance depends on access patterns

" |ncluding how step through multi-dimensional array

Carnegie Mellon

The Memory Mountain

Read throughput (MB/s) Pentium Il Xeon
1200 7 550 MHz
16 KB on-chip L1 d-cache
1000 — 16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache
800
600 —
400 -
200

N
> Working set size (bytes)

>
[eo]
X N
AN
~
[Yp]

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance

= Easily see 10:1 performance range depending on how code written

= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

m Must understand system to optimize performance
= How programs compiled and executed
= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity
and generality

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

Gflop/s
50
45
40 -
N Best code (K. Goto)
30
25
20
15
10
: Triple loop
om e . ; ; ' ' ' ' .
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

m Standard desktop computer, vendor compiler, using optimization flags
m Both implementations have exactly the same operations count (2n3)
m Whatis going on?

Carnegie Mellon

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50
45
+
40 -
35
30 -
s Multiple threads: 4x
20
15
10 - - -
. Vector instructions: 4x
g' ¢ * Memory hieraFchy and other optimizations: 20x%
o T T T T T T T T 1
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

m Effect: less register spills, less L1/L2 cache misses, less TLB misses

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

m They need to get data in and out
= |/O system critical to program reliability and performance

m They communicate with each other over networks
= Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

Carnegie Mellon

Role within CS/ECE Curriculum

CS 412
OS Practicum

CS 410 ECE 349 ECE 348
CS 415 CS 441 . CS 411 CS 462 ECE 447

Operating) . . Embedded Embedded
Databases Networks Compilers Graphics Architecture

Systems Systems System Eng.

Data Reps. Network Processes Machine

Protocols Mem.Mgmt Code Arithmetic / Execution Model
Memory Model Memory System

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

CS 123
C Programming

Carnegie Mellon

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
= QOperating Systems
= Implement large portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols

Carnegie Mellon

Course Perspective (Cont.)

m Our Course is Programmer-Centric

= Purpose is to show how by knowing more about the underlying
system, one can be more effective as a programmer

= Enable you to
= Write programs that are more reliable and efficient
= Incorporate features that require hooks into OS
— E.g., concurrency, signal handlers
" Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone
= Cover material in this course that you won’t see elsewhere

Carnegie Mellon

Teaching staff

m Instructors
= Prof. Gregory Kesden (' We’re glad to talk with you, but

= Prof. Markus Piischel please send email or phone first.

" Ben Blum

" Dan Burrows

= Alex Gartrell

= Christina Johns

= Celestine Lau

" Jan Lenz

= Nathan Mickulicz
= Hunter Pitelka

= Brett Simmers

®" Hormoz Zarnani

m Course Admin
= Cindy Chemsak (NSH 4303)

Carnegie Mellon

Textbooks

m Randal E. Bryant and David R. O’Hallaron,
= “Computer Systems: A Programmer’s Perspective”, Prentice Hall 2003.
" http://csapp.cs.cmu.edu
" This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

m Brian Kernighan and Dennis Ritchie,
= “The C Programming Language, Second Edition”, Prentice Hall, 1988

Carnegie Mellon

Course Components

m Lectures
= Higher level concepts

m Recitations

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

m Labs (7)
®" The heart of the course

= 2 or 3 weeks

" Provide in-depth understanding of an aspect of systems
" Programming and measurement

m Exams (2 + final)

= Test your understanding of concepts & mathematical principles

Getting Help

m Class Web Page
= http://www.cs.cmu.edu/~213
= Copies of lectures, assignments, exams, solutions

= (Clarifications to assignments

m Message Board
" http://autolab.cs.cmu.edu
= (Clarifications to assignments, general discussion
" The only board your instructors will be monitoring (No blackboard or
Andrew)

http://www.cs.cmu.edu/~213
http://www.cs.cmu.edu/~213

Carnegie Mellon

Getting Help

m Staff mailing list
= 15-213-staff@cs.cmu.edu
= “The autolab server is down!”
= “Who should | talk to about ...”
= “This code {...}, which | don't want to post to the bboard, causes my
computer to melt into slag.”
m Teaching assistants
= | don't get “associativity”...
= Office hours, e-mail, by appointment

= Please send mail to 15-213-staff, not a randomly-selected TA

m Professors
= Office hours or appointment
= “Should | drop the class?” “A TA said ... but ...”

Carnegie Mellon

Getting Help: Office Hours

m Kesden, Pueschel: see course website

m TAs:
= Sundays — Thursdays, 5:30pm —9:30pm
= West Wing cluster

Carnegie Mellon

Policies: Assignments (Labs) And Exams

m Work groups

" You must work alone on all but final lab

m Handins
= Assignments due at 11:59pm on Tues or Thurs evening
= Electronic handins using Autolab (no exceptions!).

m Conflict exams, other irreducible conflicts

= OK, but must make PRIOR arrangements with Prof. Kesden/Pueschel

m Appealing grades
= Within 7 days of completion of grading.
= Following procedure described in syllabus
= Labs: Email to the staff mailing list
= Exams: Talk to Prof. Kesden/Pueschel

Carnegie Mellon

Facilities

m Labs will use the Intel Computer Systems Cluster

(aka “the fish machines”)

= 15 Pentium Xeon servers donated by Intel for CS 213

= Dual 3.2 Ghz 64-bit (EM64T) Nocona Xeon processors

= 2GB, 400 MHz DDR2 SDRAM memory

= Rack mounted in the 3rd floor Wean Hall machine room.
® Your accounts are ready nearing readiness.

m Getting help with the cluster machines:

= See course Web page for login directions
= Please direct questions to your TA’s first

Carnegie Mellon

Timeliness

m Grace days
= 4 for the course
= Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
= Save them until late in the term!

m Lateness penalties

" Once grace days used up, get penalized 15%/day

= Typically shut off all handins 2—3 days after due date
m Catastrophic events

= Major illness, death in family, ...

= Work with your academic advisor to formulate plan for getting back on
track

m Advice

" Once you start running late, it’s really hard to catch up

Carnegie Mellon

Cheating

m What is cheating?

= Sharing code: either by copying, retyping, looking at, or supplying a
copy of a file.

® Coaching: helping your friend to write a lab, line by line.
= Copying code from previous course or from elsewhere on WWW
= Only allowed to use code we supply, or from CS:APP website

m What is NOT cheating?

= Explaining how to use systems or tools.

= Helping others with high-level design issues.
m Penalty for cheating:

= Removal from course with failing grade.
m Detection of cheating:

= We do check and our tools for doing this are much better than you
think!

Carnegie Mellon

Other Rules

m Laptops: permitted

m Electronic communications: forbidden

® \jolation: course failure

m Presence in lectures, recitations: voluntary

Carnegie Mellon

Policies: Grading

m Exams: weighted %, %, % (final)

m Labs: weighted according to effort (determined near the end)

m The worse of lab score and exam score is weighted 60%, the
better 40%:

=" Labscore:0<L<100,
Exam score: 0 < E <100
Total score: 0.6 min(L, E) + 0.4 max(L,E)

m Guaranteed:
= >90%: A
= >80%:B
= >70%:C

Carnegie Mellon

Programs and Data

m Topics

= Bits operations, arithmetic, assembly language programs,
representation of C control and data structures

" |ncludes aspects of architecture and compilers

m Assignments
= L1 (datalab): Manipulating bits
= |2 (bomblab): Defusing a binary bomb
= |3 (buflab): Hacking a buffer bomb

The Memory Hierarchy

m Topics
= Memory technology, memory hierarchy, caches, disks, locality
" |ncludes aspects of architecture and OS.

m Assignments
= Partially tested in Perflab (later)

Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals, nonlocal
jumps
" |ncludes aspects of compilers, OS, and architecture

m Assignments
= |4 (tshlab): Writing your own shell with job control

Carnegie Mellon

Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" |ncludes aspects of architecture and OS

m Assignments
= |5 (malloclab): Writing your own malloc package
= Get a real feel for systems programming

Carnegie Mellon

Networking, and Concurrency

m Topics
= High level and low-level I/O, network programming, Internet services,
Web servers
" concurrency, concurrent server design, threads, |/O multiplexing with
select.
" |ncludes aspects of networking, OS, and architecture.

m Assignments
= L6 (proxylab): Writing your own Web proxy

Carnegie Mellon

Performance

m Topics
= Coptimization (control and data), measuring time on a computer
" |ncludes aspects of architecture, compilers, and OS

m Assignments:

= L7 (Perflab): Optimize the runtime of a routine

Carnegie Mellon

Lab Rationale

m Each lab should have a well-defined goal such as solving a
puzzle or winning a contest.

m Doing a lab should result in new skills and concepts

m We try to use competition in a fun and healthy way.
= Set a reasonable threshold for full credit.
= Post intermediate results (anonymized) on Web page for glory!

Autolab Web Service

m Labs are provided by the Autolab system
= Autograding handin system developed in 2003 by Dave O’Hallaron
= Apache Web server + Perl CGI programs
= Beta tested Fall 2003, very stable by now

m With Autolab you can use your Web browser to:
= Review lab notes, clarifications
= Download the lab materials
= Stream autoresults to a class status Web page as you work.
= Handin your code for autograding by the Autolab server.

= View the complete history of your code handins, autoresult
submissions, autograding reports, and instructor evaluations.

= View the class status page

Carnegie Mellon

Have Fun!

