
Carnegie Mellon

Introduction to Computer Systems
15-213/18-243, spring 2009
1st Lecture, Jan. 12th

Instructors:

Gregory Kesden and Markus Püschel

The course that gives CMU its “Zip”!

Carnegie Mellon

Overview

 Course theme

 Five realities

 How the course fits into the CS/ECE curriculum

 Logistics

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality

 Most CS courses emphasize abstraction
 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & ECE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Carnegie Mellon

Great Reality #1:
Int’s are not Integers, Float’s are not Reals

 Example 1: Is x2 ≥ 0?
 Float’s: Yes!

 Int’s:

 40000 * 40000 --> 1600000000

 50000 * 50000 --> ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!

 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??

Carnegie Mellon

Code Security Example

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find
vulnerabilities in programs

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

Carnegie Mellon

Typical Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf(“%s\n”, mybuf);

}

Carnegie Mellon

Malicious Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

Carnegie Mellon

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation
 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application
programmers

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write program in assembly

 Compilers are much better & more patient than you are

 But: Understanding assembly key to machine-level
execution model
 Behavior of programs in presence of bugs

 High-level language model breaks down

 Tuning program performance

 Understand optimizations done/not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the language of choice!

Carnegie Mellon

Assembly Code Example

 Time Stamp Counter
 Special 64-bit register in Intel-compatible machines

 Incremented every clock cycle

 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);

Carnegie Mellon

Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility

 Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi = 0;

static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits

of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *lo)

{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)

:

: "%edx", "%eax");

}

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded
 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform
 Cache and virtual memory effects can greatly affect program

performance

 Adapting program to characteristics of memory system can lead to
major speed improvements

Carnegie Mellon

Memory Referencing Bug Example

double fun(int i)

{

volatile double d[1] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) –> 3.14

fun(1) –> 3.14

fun(2) –> 3.1399998664856

fun(3) –> 2.00000061035156

fun(4) –> 3.14, then segmentation fault

Carnegie Mellon

Memory Referencing Bug Example
double fun(int i)

{

volatile double d[1] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) –> 3.14

fun(1) –> 3.14

fun(2) –> 3.1399998664856

fun(3) –> 2.00000061035156

fun(4) –> 3.14, then segmentation fault

Saved State

d7 … d4

d3 … d0

a[1]

a[0] 0

1

2

3

4

Location accessed by

fun(i)

Explanation:

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java or ML

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors

Carnegie Mellon

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

Carnegie Mellon

The Memory Mountain

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1

3

s
1

5

8m

2m 51
2k 12

8k

32
k

8k

2k

0

200

400

600

800

1000

1200

Read throughput (MB/s)

Stride (words) Working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

L1

L2

Mem

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity
and generality

Carnegie Mellon

Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags

 Both implementations have exactly the same operations count (2n3)

 What is going on?

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

Carnegie Mellon

MMM Plot: Analysis

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: less register spills, less L1/L2 cache misses, less TLB misses

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out
 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes

 Coping with unreliable media

 Cross platform compatibility

 Complex performance issues

Carnegie Mellon

Role within CS/ECE Curriculum

CS 213
ECE 243

CS 410
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded
Systems

CS 412
OS Practicum

CS 123
C Programming

CS 415
Databases

Data Reps.
Memory Model

CS 462
Graphics

Machine
Code Arithmetic

ECE 348
Embedded
System Eng.

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

Execution Model
Memory System

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric
 Computer Architecture

 Design pipelined processor in Verilog

 Operating Systems

 Implement large portions of operating system

 Compilers

 Write compiler for simple language

 Networking

 Implement and simulate network protocols

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric
 Purpose is to show how by knowing more about the underlying

system, one can be more effective as a programmer

 Enable you to

 Write programs that are more reliable and efficient

 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere

Carnegie Mellon

Teaching staff
 Instructors

 Prof. Gregory Kesden

 Prof. Markus Püschel

 TA’s
 Ben Blum

 Dan Burrows

 Alex Gartrell

 Christina Johns

 Celestine Lau

 Ian Lenz

 Nathan Mickulicz

 Hunter Pitelka

 Brett Simmers

 Hormoz Zarnani

 Course Admin
 Cindy Chemsak (NSH 4303)

We’re glad to talk with you, but
please send email or phone first.

Carnegie Mellon

Textbooks

 Randal E. Bryant and David R. O’Hallaron,
 “Computer Systems: A Programmer’s Perspective”, Prentice Hall 2003.

 http://csapp.cs.cmu.edu

 This book really matters for the course!

 How to solve labs

 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,
 “The C Programming Language, Second Edition”, Prentice Hall, 1988

Carnegie Mellon

Course Components

 Lectures
 Higher level concepts

 Recitations
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam coverage

 Labs (7)
 The heart of the course

 2 or 3 weeks

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Exams (2 + final)
 Test your understanding of concepts & mathematical principles

Carnegie Mellon

Getting Help

 Class Web Page
 http://www.cs.cmu.edu/~213

 Copies of lectures, assignments, exams, solutions

 Clarifications to assignments

 Message Board
 http://autolab.cs.cmu.edu

 Clarifications to assignments, general discussion

 The only board your instructors will be monitoring (No blackboard or
Andrew)

http://www.cs.cmu.edu/~213
http://www.cs.cmu.edu/~213

Carnegie Mellon

Getting Help

 Staff mailing list
 15-213-staff@cs.cmu.edu

 “The autolab server is down!”

 “Who should I talk to about ...”

 “This code {...}, which I don't want to post to the bboard, causes my
computer to melt into slag.”

 Teaching assistants
 I don't get “associativity”...

 Office hours, e-mail, by appointment

 Please send mail to 15-213-staff, not a randomly-selected TA

 Professors
 Office hours or appointment

 “Should I drop the class?” “A TA said ... but ...”

Carnegie Mellon

Getting Help: Office Hours

 Kesden, Pueschel: see course website

 TAs:
 Sundays – Thursdays, 5:30pm – 9:30pm

 West Wing cluster

Carnegie Mellon

Policies: Assignments (Labs) And Exams

 Work groups
 You must work alone on all but final lab

 Handins
 Assignments due at 11:59pm on Tues or Thurs evening

 Electronic handins using Autolab (no exceptions!).

 Conflict exams, other irreducible conflicts
 OK, but must make PRIOR arrangements with Prof. Kesden/Pueschel

 Appealing grades
 Within 7 days of completion of grading.

 Following procedure described in syllabus

 Labs: Email to the staff mailing list

 Exams: Talk to Prof. Kesden/Pueschel

Carnegie Mellon

Facilities

 Labs will use the Intel Computer Systems Cluster
(aka “the fish machines”)
 15 Pentium Xeon servers donated by Intel for CS 213

 Dual 3.2 Ghz 64-bit (EM64T) Nocona Xeon processors

 2 GB, 400 MHz DDR2 SDRAM memory

 Rack mounted in the 3rd floor Wean Hall machine room.

 Your accounts are ready nearing readiness.

 Getting help with the cluster machines:
 See course Web page for login directions

 Please direct questions to your TA’s first

Carnegie Mellon

Timeliness
 Grace days

 4 for the course

 Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

 Save them until late in the term!

 Lateness penalties
 Once grace days used up, get penalized 15%/day

 Typically shut off all handins 2—3 days after due date

 Catastrophic events
 Major illness, death in family, …

 Work with your academic advisor to formulate plan for getting back on
track

 Advice
 Once you start running late, it’s really hard to catch up

Carnegie Mellon

Cheating

 What is cheating?
 Sharing code: either by copying, retyping, looking at, or supplying a

copy of a file.

 Coaching: helping your friend to write a lab, line by line.

 Copying code from previous course or from elsewhere on WWW

 Only allowed to use code we supply, or from CS:APP website

 What is NOT cheating?
 Explaining how to use systems or tools.

 Helping others with high-level design issues.

 Penalty for cheating:
 Removal from course with failing grade.

 Detection of cheating:
 We do check and our tools for doing this are much better than you

think!

Carnegie Mellon

Other Rules

 Laptops: permitted

 Electronic communications: forbidden
 Violation: course failure

 Presence in lectures, recitations: voluntary

Carnegie Mellon

Policies: Grading

 Exams: weighted ¼, ¼, ½ (final)

 Labs: weighted according to effort (determined near the end)

 The worse of lab score and exam score is weighted 60%, the
better 40%:
 Lab score: 0 ≤ L ≤ 100,

Exam score: 0 ≤ E ≤ 100
Total score: 0.6 min(L, E) + 0.4 max(L,E)

 Guaranteed:
 > 90%: A

 > 80%: B

 > 70%: C

Carnegie Mellon

Programs and Data

 Topics
 Bits operations, arithmetic, assembly language programs,

representation of C control and data structures

 Includes aspects of architecture and compilers

 Assignments
 L1 (datalab): Manipulating bits

 L2 (bomblab): Defusing a binary bomb

 L3 (buflab): Hacking a buffer bomb

Carnegie Mellon

The Memory Hierarchy

 Topics
 Memory technology, memory hierarchy, caches, disks, locality

 Includes aspects of architecture and OS.

 Assignments
 Partially tested in Perflab (later)

Carnegie Mellon

Exceptional Control Flow

 Topics
 Hardware exceptions, processes, process control, Unix signals, nonlocal

jumps

 Includes aspects of compilers, OS, and architecture

 Assignments
 L4 (tshlab): Writing your own shell with job control

Carnegie Mellon

Virtual Memory

 Topics
 Virtual memory, address translation, dynamic storage allocation

 Includes aspects of architecture and OS

 Assignments
 L5 (malloclab): Writing your own malloc package

 Get a real feel for systems programming

Carnegie Mellon

Networking, and Concurrency

 Topics
 High level and low-level I/O, network programming, Internet services,

Web servers

 concurrency, concurrent server design, threads, I/O multiplexing with
select.

 Includes aspects of networking, OS, and architecture.

 Assignments
 L6 (proxylab): Writing your own Web proxy

Carnegie Mellon

Performance

 Topics
 Coptimization (control and data), measuring time on a computer

 Includes aspects of architecture, compilers, and OS

 Assignments:
 L7 (Perflab): Optimize the runtime of a routine

Carnegie Mellon

Lab Rationale

 Each lab should have a well-defined goal such as solving a
puzzle or winning a contest.

 Doing a lab should result in new skills and concepts

 We try to use competition in a fun and healthy way.
 Set a reasonable threshold for full credit.

 Post intermediate results (anonymized) on Web page for glory!

Carnegie Mellon

Autolab Web Service

 Labs are provided by the Autolab system
 Autograding handin system developed in 2003 by Dave O’Hallaron

 Apache Web server + Perl CGI programs

 Beta tested Fall 2003, very stable by now

 With Autolab you can use your Web browser to:
 Review lab notes, clarifications

 Download the lab materials

 Stream autoresults to a class status Web page as you work.

 Handin your code for autograding by the Autolab server.

 View the complete history of your code handins, autoresult
submissions, autograding reports, and instructor evaluations.

 View the class status page

Carnegie Mellon

Have Fun!

