
primitive cave of electrical engineering, 
stridently believed that all future com-
puter scientists would need to command 
a deep understanding of semiconduc-
tors, binary arithmetic, and microproces-
sor design to understand software. Fast-
forward to today, and I am willing to bet 
good money that 99% of people who are 
writing software have almost no clue how 
a CPU actually works, let alone the phys-
ics underlying transistor design. By ex-
tension, I believe the computer scientists 
of the future will be so far removed from 
the classic definitions of “software” that 
they would be hard-pressed to reverse a 
linked list or implement Quicksort. (I am 
not sure I remember how to implement 
Quicksort myself.)

AI coding assistants such as CoPilot 
are only scratching the surface of what I 
am describing. It seems totally obvious 
to me that of course all programs in the 

I 
CA M E  OF  AGE  in the 1980s, pro-
gramming personal computers 
such as the Commodore VIC-20 
and Apple ][e at home. Going 
on to study computer science 

(CS) in college and ultimately getting a 
Ph.D. at Berkeley, the bulk of my pro-
fessional training was rooted in what I 
will call “classical” CS: programming, 
algorithms, data structures, systems, 
programming languages. In Classical 
Computer Science, the ultimate goal is 
to reduce an idea to a program written 
by a human—source code in a language 
like Java or C++ or Python. Every idea in 
Classical CS — no matter how complex 
or sophisticated, from a database join 
algorithm to the mind-bogglingly ob-
tuse Paxos consensus protocol — can be 
expressed as a human-readable, human-
comprehendible program.

When I was in college in the early 
1990s, we were still in the depths of the 
AI Winter, and AI as a field was likewise 
dominated by classical algorithms. My 
first research job at Cornell University 
was working with Dan Huttenlocher, a 
leader in the field of computer vision (and 
now Dean of the MIT Schwarzman Col-
lege of Computing). In Huttenlocher’s 
Ph.D.-level computer vision course in 
1995 or so, we never once discussed any-
thing resembling deep learning or neural 
networks—it was all classical algorithms 
like Canny edge detection, optical flow, 
and Hausdorff distances. Deep learn-
ing was in its infancy, not yet considered 
mainstream AI, let alone mainstream CS.

Of course, this was 30 years ago, and a 
lot has changed since then, but one thing 
that has not really changed is that CS is 
taught as a discipline with data struc-

tures, algorithms, and programming at 
its core. I am going to be amazed if in 
30 years, or even 10 years, we are still ap-
proaching CS in this way. Indeed, I think 
CS as a field is in for a pretty major up-
heaval few of us are really prepared for.

Programming will be obsolete. I be-
lieve the conventional idea of “writing a 
program” is headed for extinction, and 
indeed, for all but very specialized appli-
cations, most software, as we know it, will 
be replaced by AI systems that are trained 
rather than programmed. In situations 
where one needs a “simple” program 
(after all, not everything should require a 
model of hundreds of billions of param-
eters running on a cluster of GPUs), those 
programs will, themselves, be generated 
by an AI rather than coded by hand.

I do not think this idea is crazy. No 
doubt the earliest pioneers of computer 
science, emerging from the (relatively) 

Viewpoint 
The End of Programming 
The end of classical computer science is coming,  
and most of us are dinosaurs waiting for the meteor to hit.

DOI:10.1145/3570220	 Matt Welsh

34    COMMUNICATIONS OF THE ACM   |   JANUARY 2023  |   VOL.  66  |   NO.  1

V
viewpoints

I
M

A
G

E
 B

Y
 U

R
S

A
 M

A
J

O
R

 

https://dx.doi.org/10.1145/3570220
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570220&domain=pdf&date_stamp=2022-12-20


code or systems underlying their innova-
tions; the building blocks of AI systems 
are much higher-level abstractions like 
attention layers, tokenizers, and datas-
ets. A time traveler from even 20 years ago 
would have a hard time making sense of 
the three sentences in the (75-page!) GPT-
3 paper3 describing the actual software 
built for the model: “We use the same 
model and architecture as GPT-2, includ-
ing the modified initialization, pre-nor-
malization, and reversible tokenization 
described therein, with the exception 
that we use alternating dense and lo-
cally banded sparse attention patterns 
in the layers of the transformer, simi-
lar to the Sparse Transformer. To study 
the dependence of ML performance on 
model size, we train eight different sizes 
of model, ranging over three orders of 
magnitude from 125 million parameters 
to 175 billion parameters, with the last 
being the model we call GPT-3. Previous 
work suggests that with enough training 
data, scaling of validation loss should be 
approximately a smooth power law as a 
function of size; training models of many 
different sizes allows us to test this hy-
pothesis both for validation loss and for 
downstream language tasks.”

This shift in the underlying definition 
of computing presents a huge opportu-
nity, and plenty of huge risks. Yet I think 
it is time to accept that this is a very likely 
future, and evolve our thinking accord-
ingly, rather than just sit here waiting for 
the meteor to hit.	

References
1.	 Berger, E. Coping with copilot. SIGPLAN PL 

Perspectives Blog, 2022; https://bit.ly/3XbJv5J
2.	 Bostrom, N. Superintelligence: Paths, Dangers, 

Strategies. Oxford University Press, 2014. 
3.	 Brown, T. et al. Language models are few-shot 

learners. 2020; https://bit.ly/3Eh1DT5
4.	 Kojima, T. et al. Large language models are zero-shot 

reasoners. 2022; https://bit.ly/3Ohmlqo
5.	 Nye, M. et al. Show your work: Scratchpads for 

intermediate computation with language models. 
2021; https://bit.ly/3TLnfMY

Matt Welsh (mdw@mdw.la) is the CEO and co-founder 
of Fixie.ai, a recently founded startup developing AI 
capabilities to support software development teams. 
He was previously a professor of computer science at 
Harvard University, a director of engineering at Google, an 
engineering lead at Apple, and the SVP of Engineering at 
OctoML. He received his Ph.D. from UC Berkeley back in 
the days when AI was still not playing chess very well.

Copyright held by author. 

future will ultimately be written by AIs, 
with humans relegated to, at best, a su-
pervisory role. Anyone who doubts this 
prediction need only look at the very rap-
id progress being made in other aspects 
of AI content generation, such as image 
generation. The difference in quality 
and complexity between DALL-E v1 and 
DALL-E v2 — announced only 15 months 
later — is staggering. If I have learned 
anything over the last few years working 
in AI, it is that it is very easy to underes-
timate the power of increasingly large AI 
models. Things that seemed like science 
fiction only a few months ago are rapidly 
becoming reality.

So I am not just talking about things 
like Github’s CoPilot replacing program-
mers.1 I am talking about replacing the 
entire concept of writing programs with 
training models. In the future, CS stu-
dents are not going to need to learn such 
mundane skills as how to add a node to 
a binary tree or code in C++. That kind of 
education will be antiquated, like teach-
ing engineering students how to use a 
slide rule.

The engineers of the future will, in a 
few keystrokes, fire up an instance of a 
four-quintillion-parameter model that 
already encodes the full extent of human 
knowledge (and then some), ready to be 
given any task required of the machine. 
The bulk of the intellectual work of get-
ting the machine to do what one wants 
will be about coming up with the right 
examples, the right training data, and the 
right ways to evaluate the training pro-
cess. Suitably powerful models capable 
of generalizing via few-shot learning will 
require only a few good examples of the 
task to be performed. Massive, human-
curated datasets will no longer be nec-
essary in most cases, and most people 
“training” an AI model will not be run-
ning gradient descent loops in PyTorch, 
or anything like it. They will be teaching 
by example, and the machine will do the 
rest.

In this new computer science — if we 
even call it computer science at all — the 
machines will be so powerful and already 
know how to do so many things that the 
field will look like less of an engineering 
endeavor and more of an an educational 
one; that is, how to best educate the ma-
chine, not unlike the science of how to 
best educate children in school. Unlike 
(human) children, though, these AI sys-
tems will be flying our airplanes, run-

ning our power grids, and possibly even 
governing entire countries. I would argue 
that the vast majority of Classical CS be-
comes irrelevant when our focus turns 
to teaching intelligent machines rather 
than directly programming them. Pro-
gramming, in the conventional sense, 
will in fact be dead.

How does all of this change how we 
think about the field of computer sci-
ence? The new atomic unit of computa-
tion becomes not a processor, memory, 
and I/O system implementing a von Neu-
mann machine, but rather a massive, 
pre-trained, highly adaptive AI model. 
This is a seismic shift in the way we think 
about computation — not as a predict-
able, static process, governed by instruc-
tion sets, type systems, and notions of 
decidability. AI-based computation has 
long since crossed the Rubicon of being 
amenable to static analysis and formal 
proof. We are rapidly moving toward a 
world where the fundamental building 
blocks of computation are temperamen-
tal, mysterious, adaptive agents.

This shift is underscored by the fact 
that nobody actually understands how 
large AI models work. People are publish-
ing research papers3–5 actually discovering 
new behaviors of existing large models, 
even though these systems have been 
“engineered” by humans. Large AI mod-
els are capable of doing things that they 
have not been explicitly trained to do, 
which should scare the living daylights 
out of Nick Bostrom2 and anyone else 
worried (rightfully) about an superintel-
ligent AI running amok. We currently 
have no way, apart from empirical study, 
to determine the limits of current AI sys-
tems. As for future AI models that are or-
ders of magnitude larger and more com-
plex — good luck!

The shift in focus from programs to 
models should be obvious to anyone who 
has read any modern machine learning 
papers. These papers barely mention the 

I think CS as a field  
is in for a pretty  
major upheaval 
few of us are really 
prepared for.

Watch the author discuss  
this work in the exclusive 
Communications video.  
https://cacm.acm.org/videos/ 
end-of-programming

JANUARY 2023  |   VOL.  66  |   NO.  1   |   COMMUNICATIONS OF THE ACM     35

viewpoints

V




