Yimproving Predictability in Real Time Avionics and Space Systems
Bruce Lewis', Peter Feilet®, Steve Vestdf), Christophe Guettier®

@ U.S. Army Aviation and Missile Com, Attn:AMSARD-BA-AT, Redstone Arsenal, AL., 35898, USA,
Email:Bruce.Lewis@ed.redstone.army.mil
@ software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA, Email:phf@sei.cmu.edu
® Honeywell Labs, 3660 Technology Drivdjnneapolis, MN 554181006, USA Email:vestal@htc.honeywell.com
@ Xerox Palo Ato Research CenteB333 Coyote Hill Road, Palo Alto CA 94304, USA
Email:guettier@parc.xerox.com

ABSTRACT

This abstract discusses a modehsed architectural approach for improving predictability of performance in embedded
reattime systems. This approh utilizes automated analysis of task and communication architectures to provide insight
into schedulability and reliability during design. Automatic generation of a runtime executive that performs task
dispatching and inteitask communication eliminatesnanual coding errors and results in a system that satisfies the
specified execution behavior. The MetaH language and toolset supports this mdmbeded approach. MetaH has been
used in a demo projects applied to missile guidance systems and spacecraft atié control. Reduced time and cost
benefits observed will be discussed as a case study.

The Society of Automotive Engineers (SAE); Avionics Systems Division (ASD); working group on Avionics
Architecture Description Language (AADL) is using MetaH as a baseapability to develop an international standard
avionics architecture description language. Space is a domain with similar requirements. A joint research project is
being considered in combination with constraint programming technology from Axlog an d systems engineering
technology from INRIA (Dr. Gerard Le Lann, Proof Based System Engineering) of France which should provide
additional system engineering capability of interest in the space domain.

CREDITS

This paper has been adapted from a specigport from the Software Engineering Institute published under CMU/SEI
2000SR-011. The technology has been developed with the support of the US Defense Advanced Research Projects
Agency, US Army, and the Open Systems Joint Projects Office.

1. NEED FOR PREDICTABLE REAL -TIME SYSTEMS DEVELOPMENT AND EVOLUTION

The performance and reliability of time -sensitive systems depends significantly on the execution environment
(compilers, operating systems, processors, buses, I/0 devices). It is often very expersiahbst such systems when
computing capacity is exceeded or the hardware becomes obsolete. Embedetdeeaiftware is particularly difficult
to rehost because of 1) its tailoring and optimization to fit the limited resource footprint of the hardwdrg)ahe need
to support specialized device interfaces. Avionics and flight control software adds to the complexity by requiring
multilevel safety, fault tolerance, modular multiprocessor archites, and very complex multinode sgtem behavior.

! In the proceedings of the Eurospace conference on Data System in Aerospace, Nice, France, June 2001

Becausef the complexity of upgrading the software for a new processing environment, one of the most significant
risks in system development of large rdahe systems, especially avionics and flight control systems, is the problem of
exceeding the computationegsources during the software development process and during the operational lifetime of
the system. Program after program has had to scale back system requirements to fit on the hardwarentegration,
maintenance, and upgrade costs are driven up sintt@a@ must be shoehorned into the available resources for as long
as possible.

In addition, the execution capacity of many systems is not well understood. The softwaratesn design and analysis
techniques often used provide limited quantitative indimabof schedulability bounds and performance limitations early
in the life cycle. Furthermore, the impact of system changes on available resources, real-time performance, and
reliability is often not understood. Even small changes can result in unexpected and difficult-to-resolve failures.
Eventually, these changes exceed the capacity of steray

In this age of commercial off -the-shelf (COTS) processors, and with the very rapid increase in power of those
processors, finding a higher performing procesisasften not the problem. Again, the greater difficulty is in moving the
software onto a new execution gtarm.

2. MODEL -BASED ENGINEERING APPROACH

Many development projects today use computers to develop and maintain their documents. However, the software
development process still imitates a manual, papietensive process, where developers work on design after reading
requirements documentation. Similarly, code is produced manually from design documentation. This introduces
opportunity for errors.

Even in projects that deploy tools to support detailed design, architectural design typically is expressed as {amxt

arrows charts; accompanying text specifies expected system behavior and system quality attributes such as performance
and reliability. As detail ed design and i mplementation approaches, the system is divided into computer software
configuration items (CSCI) that are developed independently. Less and less architectural context information is

available. When integration time comes, pieces do not gkwé. If the development process has poor interface control,

they may not fit functionally. If quality attributes such as perfanance are not well documented and are not analyzed
repeatedly, system behavior in terms of these quality attributes may restisfactory when the system is integrated for

the first time or upgraded.

Integrated Project Teams alleviate some of the communication problems in this “Ovigre-Wall” approach, but still

retain the problems inherent in human interpretation and traisiadf documents. Although evaluations of architecture
may occur with requirements modeling tools and simulations, the results are reduced again to paper for impact on the
final system software. Modeling results tend to be disconnected from the next phased from each other. Multiple
complex modeling languages are required, one for each system analysis aggeatlah of components into a system is
manual, often difficult, complex, and very expensive. Code generation for system or component analysis is f or
prototyping; requirements are again specified for human development of a traceable, testable integrated system.

In a model-based engineering process the architecture of a system is made explicit and is visible throughout the
development process. The anitecture is the basis for an engineering model that allows for repeated analysis of the
system from various perspectives, starting early in the life cycle. The architectural model evolves with the system
being a key element of the system development. &gesult, the impact of changes to a system on systefde quality

attributes can be quickly validated through re -analysis, based on the architectural model. System integration is
performed more smoothly as interface inconsistencies can be identified egrias well as inconsistencies in various
critical quality attributes of the stem.

This new paradigm is based on the ability to specify a re&the system architecture in terms of software and hardware
components and their interfaces, the system execliédravior, and its quality attributes. This architectural model is the
basis for analyzing the system'’s properties and automatically building the system. Firstdhiéegture specification is
used to model and analyze schedulability, reliability (faulhandling), and safety/security dependencies. These issues
must be understood early in time - and safety -critical systems. Once the systems engineer is satisfied with the
architecture, the coponents can be developed, reused from another project, or gendrm@arallel with incremental
automated integration of the system. The system is easily-ietegrated through regeneration from the specification.
Early integrations may be on a workstation, where bekimr and system output can be validated. The final sfem is
automatically integrated from the specification and components, hardware and software, on the target platform where
execution behavior and results can again bedaaéd.

A major benefit is that the specified architecture and execution behaviocapured, not on paper, in the heads of the
designers, or in scattered databases, but in one specification that integrates the final system and generates the executive
that drives its execution. Also, a single architectural specification is used for muttie formal analyses; therefore the

system is gemated compliant, with each of the models used for analysis.

Changes can be quickly made at the specification level for load balancing, scaling, timing, message passing, shared
data, new components, addingifaresponse modes, etc. Since the processor, buses, or other hardware devices are part
of the architecture specification, they can quickly be changed to any from a user -expandable library. Hardware
dependencies reside in the specification and toolset ratir than the application code, allowing rapid ports to new
environments.

3. METAH, THE MODEL B ASED ARCHITECTURE DE SCRIPTION LANGUAGE

MetaH is an architecture description language originally intended for use in Avionics applations [Honeywell 98].
Specificaly, it supports the description, analysis, and generation of task and communication architectures of embedded
reattime system applications. The MetaH notation allows developers to describe an application in terms of tasks, task
comnunication, operationamodes, and composition of tasks in terms of software components, hardware, and mapping
of the software system onto the hardware [Binns 93]. Software mponents themselves may have been developed by
hand or by domainspecific application generators such aSimuLink. The notation currently emphasizes support for
processing of continuous data streams such as continuous control applications, with limited supportdoneti event
systems.

The MetaH toolset provides

» agraphical editor to create and maintanchitectural models

» asuite of analysis tools including a schedulability analysis tool based on Generalized Rate Monotonic Analysis
(GRMA); a reliability analysis tool to determine the probability of failure of a system subjected to randomly arriving
faults in terms of a stochastic finite state reliability model; and a safety analysis tool to investigate the potential of
impact between system components of different safety levels

» ageneration and build capability that includes a code generator forskldespatch and communication code in form
of a MetaH executive; a system builder that combines user-supplied components with the generated task and

communication calls; and the runtime kernel, i.e., real-time operating system, supporting the exeation of the
application

One key to successful embedded systems is a layered runtime architecture that suppoiti®peag. The major driver

for partitioning is the dramatic rediction in initial and upgrade validation and verification (V&V) effort that can be
achieved. Paritioning methods have been fielded and their use is spreading rapidly for civil aviation. The use of
partitioning methods to reduce certification effort is recognized in the Radio Technical Commission for Aeronautics
(RTCA) DO-178B standard, irseveral Aeronautical Radio, Inc. (ARINC) standards, and by the U.S. Federal Aviation
Administration (FAA) and European Joint Aviation Authtzs (JAA).

The layered runtime architecture facilitates portability in the following ways. Auto generation aflovtailoring of the

MetaH executive. The MetaH kernel is portable through use of Ada95 and IEEE POSIX (portable operating interface
standard) application programming interface (API). Timing protection enforces timing constraints at runtime. Their
enforcenent ensures validity of analysis results; i.e., a misbehaving process cannot encroachesothieas granted to
another process. Applications are restricted from use of operating systems functions that are key to maintaining integrity
established througkhe MetaH executive and kernel. Memory protection assures the safety of one component from
misbehavior of other components by preventing accessvatermemory spaces.

4. POSSIBLE EXTENSION FOR FEASIBILITY A NALYSIS

The MetaH toolset provides a capaljlito automatically load balance processors, buses across modes of operations for
processes that are not specified to execute on a specific processor. However, a constraint programming approach
provides a more flexible approach for feasibility analysis @selection of best alternatives. Instead of experimenting

with values and simulating an important search space, the designer needs a more powerful expression and solving
approach. This objective requires solving simultaneously several related problesagh as mapping the tasks set to
physical processors (which is NRard), as well as satisfying feasibility conditions of scheduling policies. In the case of

the timeliness property, these conditions model the satisfaction of réale constraints based ohligher Priority First

(HPF) or Earliest Deadline First (EDF) policies. Hence, finding a feasible solution satisfying f@@le constraints and
processing elements resources generally requires problsalving techniques. Stemming from Logic Programming,
Integer and Mathematical Programming, Constraint Programming (CP) [Jaffar & Lassez 87] approaches are recognized
to be powerful tools to cope with difficult and large combinatorial problems. The efficiency of the approach to model

and solve mapping problemsas already exhibited significant results in the Digital Signal Processing area, despite the
numerous noHinear constraints [Guettier 97]. Following the same approach, CP provides various ways to model
complex, dynamic, regtime systems in order to propesutomatically design choices and architectural size. The global
problem design can be expressed using several constrdiased models. Composed with mathematical variables and
algebraic constraints, models represent invariants offsoblems like schedability conditions or processor allocation.
Relations between models are conjunctions of constraints that maintain the consistency of the global solution. Using CP
techniques, models are derived into concurrent search spaces. Each time the solvingsgrognesof the search space,

the partial solution is propagated to other ones using models relations. Therefore, by maintainingansistency, the

CP system cuts other search spaces such that a global solution can be reach faster.

The workload distribtibn of the tasks set can mathematically be represented using set partitioning constraints:

T=Us, Oiji#jsns ={}i00

WhereT (n=card(T)) is the set of tasks, and eacS, is a subset ofl associated to thé"i processor of the systeni|(is

the set of available processors). The first constraint states that all the tasks are completely distributed, while the second
one states that tasks cannot be replicated.

Preemptive scheduling policies fit very well coarse grain taskcheduling, with periodic/sporadic activation periods,
satisfying timeliness property. On a practical viewpoint, when deadlines are assimilated to periods, modeling
schedulability using CP techniques is fairly simple and is sufficient to illustrate owtll solving approach. To tackle

more complex assumptions (when deadlines are different from periods), a CP approach can take advantage of a convex
schedulable domain for EDF, opposed to the HPF, for which the domain can not be easily expressed. Lesigecan

periodic nonconcrete trafficT, represented by a set nfperiodic and sporadic tasks . An activation periodT;) (equal

to its deadline) and a worst -case execution time (C) are assimilated to each task. The well-known Liu&Layland
necessary condition for scheduling a worstase execution of the tasks using EDF or HPF can be given using the
workload:

. . . n, C,
T isfeasiblewith EDF,HPF= Z—T <1
=10

The associated prototype is developed upon Sicstus Prolog that encapsulates-ibietstatat in castraint

propagation algorithms. Those algorithms are equivalent to logical proof methods, but where predicates can be
constraints interpreted in a mathematical algebra. Thus, the proof algorithm can interplay between a logical reasoning
using Horn clauseand arithmetic reasoning. This leads to more important proof domain, a better management of the
combinatory and a higher efficiency, resulting from important search pruning and constraints propagation.

The prototype has been experimented on spatial platfaircraft avionic and autonomous undersea vehicles and has
provided interesting results. Future works will extend this approach to more complex feasibility conditions, related to

distributed scheduling problems withp@riodic activation laws, under reime and reliability constraints.

4. MISSILE CASE STUDY

This case study describes a pilot application of the MetaH technology by the U.S. Army AMCOM SED laboratory to
missile guidance systems. An existing missile guidance system, implemented in Jovia$ rgangineered to run on a
new hardware platform and to fit into a generic missile reference architecture [McConnell 96]. As part of the
reengineering effort the system was modularized and translated into Ada95. The task architecture consistingldf 12
concurrent tasks was represented as a MetaH model and the implementation generatechatitally from the MetaH
model and the Ada95 coded application components. The resulting system consisted of 12,000 source lines of
application component code, 3000 lined MetaH executive generated from the MetaH model, and 3000 lines of code
representing MetaH kael services. The engineers doing the reengineering work made a conservative estimate of effort
required to reengineer the system into a pure Ada95 implementation and validated the estimate with the prime
contractor who implemented the missile. Based on the results, we estimated a 40% savings on the ‘engfineering
effort. Most of the savings came in the building and debugging of the retine environmensimulation and the real
time missile flight code. Because the processing environment, dual 80960 processors, was very tight for both the
missile code and the environment simulation code, we used extensively the scheduling analysis to break up the

simulaton into rates that would meet the flight requirements but also be schedulable across the dual processors. The
automated integration of components allowed rapidhtegration as we developed in an iterative fashion with more and
more capability in each poven design. Iterations on the architecture were easily expressed and the system auto re
integrated by generation of the middleware and glue code. The capability to get timing data from the executing system
and to run on both nonreaktime and reailtime environments with the same flight behavior was also very valuable for
system tuning. Estimates from the missile prime were that we saved 66% of the effort based on their experience in
similar activities.

After the initial port into Ada95 and MetaH, the pplication was ported several more times to new hardware platforms

as processor technology evolution continued its fast pace. These ports included multiple ports to single and dual
processor implementations of the initial target hardware, as well as new pocessors, compilers, and O/S. In these
successive ports the exetables performed correctly, timing and ordering preserved, on each target environment the
first time we could execute on the new environment. This capability to port to a new target not grthe application

code but also its time sensitive qualities demonstrates an ability to do software first development and then port or evolve
at significantly lower risk to new hardware. Our porting time was 1/10 of the expected time on average for Ada9

ports and increased the savings for the overall project (if a final port had been necessary) from 40% to 50%. POSIX
ports would be more complex given the far greater variation of services provided in POSIX compliant O/Ss. Custom
ports can also be amplex since MetaH middleware generation must be mapped to custom O/S calls. However, once a
port is working, rebuilding and tuning on the execution platform is very rapid. Glue code is rebuilt to the timing and
architectural requirements in the MetaH speification. The MetaH Architectural Specification Language (ADL) is

highly tunable for software and hardware architectural variation. MetaH hardware ports become part of the component
library for future use.

SUMMARY

In this paper we have examined a hichly predictable, flexible, approach based on moddbased engineering for the
development and evolution enbedded realtime systems. This approach came from the avionics and flight control
domain and is useful in the space domain. This approach leverageshitectural modeling of reatime aspects of a
system by supporting analysis of schedulability, performance, and reliability. The approach als@ports automatic
generation of runtime executives specific to the application, and system build of the corapdgstem from developer
supplied components and the generated abex

We have demonstrated the practicality of this approach in the context of MetaH, a real -time system architecture
description language and supporting toolset for analysis and generatin. A U.S. Army AMCOM case study has
demonstrated the benefits of deploying such tedbgy to existing systems. These benefits include system analysis and
validation of nonfunctional properties, such as timing and performance, early in the life cyclgyamtion of concerns
regarding functionality of the application and the redime behavior in terms of task dispatching and communication;
and automatic generation of executive code from the model against commercial and standard runtime environments,
suchas IEEE POSIX conformant reatime operating systems or language runtime systems such as Ada95. This has
resulted in a major reduction in cost for system development, evolution and for porting embedded applications to new
hardware configurations and platfos.

References:

[Binns 93] Binns, Pam & Vestal, Steve. “Scheduling and Communication in
MetaH,” IEEE RealTime Systems SymposiuraleighDurham

[Guettier 97]

[Jaffar & Lassez 87]

[Honeywell 98]

[McConnell 96]

[OMG 99]

NC, December 1993.

C. Guettier, Global Optimization of Digital Signal Processing
Application Mapping onto Parallel Architectures using Constraint
Logic Programming, Thesis of the Ecole Superieure des Mines de
Paris, Paris, December 1997

J. Jaffar and-L. Lassez, Constraint Logic Programming, in Proc
of the 14" ACM Symposium on Principles of Programming
Languages, Munich, Jan. 1987

Honeywell, Inc.MetaH Product InformationAvailable
URL:<http://www.htc.honeywell.com/metah/prodinfo.html

McConnell, David J.; Lewis, Bruce; & Grey, Lisa. “Re
engineering a Single Threaded Embedded Missile Application
Onto a Parallel Processing Platform Using MetaPlibceedings
of 4" International Workshop on Parallel and Distributed Real
Time §stemsHonolulu, HI, April 1996.

The Object Management GrouRFP: UML Profile for
Scheduling, Performance, and Tinl®@MG Document ad/993
13) Framing ham, MA: March 199%vailable
URL:<http://www.omg.org/cgbin/doc?ad/993-13.pdH

