
Ring pipelined algorithm for the algebraic path problem on the CELL
Broadband Engine∗

Claude Tadonki
Laboratoire de l’Accélérateur Linéaire/IN2P3/CNRS

University of Orsay, Faculty of Sciences, Bat. 200
91898 Orsay Cedex (France)

claude.tadonki@u-psud.fr

Abstract

The algebraic path problem (APP) unifies a number of
related combinatorial or numerical problems into one that
can be resolved by a generic algorithmic schema. In this
paper, we propose a linear SPMD model based on the
Warshall-Floyd procedure coupled with a systematic shift-
toroı̈dal. Our scheduling requires a number of processors
that equals the size of the input matrix. With a fewer num-
ber of processors, we exploit the modularity revealed by
our linear array to achieve the task using a locally paral-
lel and globally sequential (LPGS) partitioning. Whatever
the case, we just need each processor to have a local mem-
ory large enough to house one (probably block) column of
the matrix. Considering these two characteristics clearly
justify an implementation on the CELL Broadband engine,
because of the efficient SPE to SPE communication band-
width and the absolute power of each SPE. We report our
experimentations on a QS22 CELL blade on various input
configurations and exhibit the efficiency and scalability of
our implementation. We show that, with a highly optimized
Warshall-Floyd kernel, we could get close to 80 GFLOPS
in simple precision with 8 SPEs (i.e. 80% of the peak per-
formance for the APP).

1 Introduction

The algebraic path problem (APP) unifies a number of
related problems (transitive closure, shortest paths, Gauss-
Jordan elimination, to name few.) into a generic formula-
tion. The problem itself has been extensively studied at the
mathematic, algorithmic, and programming point of view
on various technical contexts. Among existing algorithms,
the dynamical programming procedure proposed by Floyd

∗Work done under the PetaQCD project, supported by the french re-
search agency ANR.

[3] for the shortest paths and Warshall [15] for the transitive
closure sor far remains on the spotlight. Due to the wide
range of (potential) applications for this problem, some-
times and ingredient to solve other combinatorial problems,
providing an efficient algorithm or program to solve the
APP is crucial.

In this paper, we consider an implementation on the
CELL [10]. The CELL processor has proved to be quite
efficient compare to traditional processors when it comes
to regular computation. For a more general use, an impor-
tant programming effort is required in order to achieve the
expected performance. A part from providing highly opti-
mized SPU kernels, it is also important to derive a global
scheduling in which all participating SPEs efficiently coop-
erate in order to achieve the global task (managed from the
PPU). Most of existing codes for the CELL are based on a
master slaves model, where the SPEs get the data from the
PPU, perform the computation and send the result back to
the main memory through direct memory accesses (DMAs).
Such models suffer from lack of scalability, especially on
memory intensive applications. Our solution for the APP
is based on a linear SPMD algorithm, with quiet interest-
ing properties like local control, global modularity, fault-
tolerance, and work optimal complexity.

Some attempts on implementing the transitive closure on
the CELL can be found in the literature. Among them, we
point out the works described in [8] (up to 50 GFLOPS) and
[11] (up to 78 GFLOPS in perspective). The two solutions
are both based on a block partitioning of the basic Warshall-
Floyd together with had-hoc memory optimization and effi-
cient global synchronization. In such master-slaves models
where all the SPEs compute the same step of the Warshall-
Floyd procedure at a time, a special care is required for data
alignment in addition to redundant data management (the
pivot elements). Since memory is a critical resource for
the SPE, we think it is important to come with a solution
which is algorithmically robust regarding both memory re-

quirement and data transfers. We consider this work as one
answer to those key points in addition to the absolute per-
formance for which we are also competitive (potential of 80
GFLOPS).

The rest of the paper is organized as follows. The
next section provides an overview of the CELL Broadband
Engine and its main characteristics. This is followed by
a fundamental description of the APP, together with the
Warshall-Floyd algorithm and the variant of our concern.
In section 4, we present our scheduling and discuss various
key points. This is followed in section 5 by our implementa-
tion strategy on the CELL and related technical issues. We
show and comment our experimental results in section 6.
Section 7 concludes the papers.

2 Overview of the CELL Broadband Engine

The CELL[1, 10] is a multi-core chip that includes nine
processing elements. One core, the POWER Processing El-
ement (PPE), is a 64-bit Power Architecture. The remaining
eight cores, the Synergistic Processing Elements (SPEs), are
Single Instruction Multiple Data (SIMD) engines (3.2GHz)
with 128-bit vector registers and 256 KB of local memory,
referred to as local store (LS). Figure fig. 1 provides a syn-
thetic view of the CELL architecture.

Figure 1. DMA scheme from the SPU

Programming the CELL is mainly a mixture of single
instruction multiple data parallelism, instruction level paral-
lelism and thread-level parallelism. The chip was primarily
intended for digital image/video processing, but was imme-
diately considered for general purpose scientific program-
ming (see [17] for an exhaustive report on the potential of
the CELL BE for several key scientific computing kernels).
A specific consideration for QR factorization is presented in
[6]. Nevertheless, exploiting the capabilities of the CELL in
a standard programming context is really challenging. The
programmer has to deal with constraints and performance
issues like data alignment, local store size, double preci-

sion penalty, different level of parallelism. Efficient imple-
mentations on the CELL commonly a conjunction of a good
computation/DMA overlap and a heavy use of the SPU in-
trinsics.

3 The algebraic path problem

3.1 Formulation

The algebraic path problem(APP) may be stated as fol-
lows. We are given a weighted graph G = 〈V,E, w〉
with vertices V = {1, 2, · · · , n}, edges E ⊆ V × V
and a weight function w : E → S, where S is a closed
semiring 〈S,⊕,⊗, ∗, 0, 1〉 (closed in the sense that ∗ is a
unary “closure” operator, defined as the infinite sum x∗ =
x ⊕ (x ⊕ x) ⊕ (x ⊕ x ⊕ x) ⊕ · · ·). A path in G is a
(possibly infinite) sequence of nodes p = v1 · · · vk, and
the weight of a path is defined as the product w(p) =
w(v1, v2)⊗w(v2, v3)⊗ · · · ⊗w(vk−1, vk). Let P (i, j) de-
notes the (possibly infinite) set of all paths from i to j. The
APP is the problem of computing, for all pairs (i, j), such
that 0 < i, j ≤ n, the value d(i, j) defined as follows

d(i, j) =
⊕

p∈P (i,j)

w(p). (1)

For the transitive closure, M is the incidence boolean ma-
trix and {⊕,⊗} = {∨,∧}. For the shortest path, M is the
cost matrix and {⊕,⊗} = {min, +}. In any case, ⊕ and ⊗
are commutative and associative. Moreover, ⊗ is distribu-
tive over ⊕. These three properties are very important as
they allow to safely permute and factorize the computations
as desired.

3.2 Warshall-Floyd algorithm

We reconsider the previous formulation and context. Let
P (k)(i, j) be the set of all paths from i to j of length k.
Thus, P (i, j) is the union of all P (k)(i, j), k ≥ 0. This
yields equation (2)

⊕

p∈P (i,j)

w(p) =
⊕

k≥0

(
⊕

p∈P (k)(i,j)

w(p)) (2)

From (1) and (2), we can write

d(i, j) =
⊕

k≥0

d(k)(i, j), (3)

where
d(k)(i, j) =

⊕

p∈P (k)(i,j)

w(p). (4)

If M is the incidence or weight matrix of a finite graph G
of order n, then M (k) denotes the matrix of d(k)(i, j), and

2

M∗ the closure matrix (the one we want to compute). By
extending the operator ⊕ to matrices, we obtain

M∗ = M (0) ⊕M (1) ⊕M (2) ⊕ · · · ⊕M (n), (5)

where M (0) = M .
The Warshall-Floyd dynamical programming procedure

to solve the APP formulation is inspired from equation (5),
where P (k)(i, j) is now the set of all paths from i to j cross-
ing the nodes {1, 2, · · · , k}. Thus, m(k)(i, j) can be com-
puted from m(k−1)(i, j) by considering node k as follows

m
(k)
ij = mij ⊕ (m(k−1)

ik ⊗m
(k−1)
kj). (6)

An important property of this algorithm, which turns to be
a memory advantage, is that all the M (k) can be housed
inside the same matrix M . So, we perform n in-place (ma-
trix) updates within the input matrix M and end with the
closure matrix M∗. At step k, row k (resp. column k) is
called pivot row (resp. pivot row). They remain constant at
step k and are used to upgrade M (k−1) to M (k). Figure 2
depicts a snapshot of the dataflow of the algorithm, which
is of O(n3) complexity. A part from that O(n3) complex-

Figure 2. Warshall-Floyd procedure

ity, which refers to floating point operations, it is impor-
tant to notice that the move of the pivot row and the pivot
column, although quite regular compare to gaussian pivot-
ing, need a special attention. There are mainly two impacts.
The first is on the memory access pattern, which sustains
a shift from one step to the next one. The second one is
on the pipeline scheduling, the pivot elements have to be
ready before starting a given step. In order to get ride of the
difference between Warshall-Floyd steps, we now consider
a shift-toroı̈dal transformation proposed by Kung, Lo, and
Lewis [9].

3.3 Kung-Lo-Lewis mapping

The idea is to maintain the pivots at the same place,
preferably at the origins. To do so, Kung, Lo, and Lewis
have suggested a shift-toroı̈dal of the matrix after each ap-
plication of the standard Warshall-Floyd procedure. Tech-
nically, it is equivalent to say that after each step, the nodes
are renumbered so that node i becomes node i − 1 (or
(i−1) mod n+1 to be precise). Thereby, the matrices M (k)

are completely identical, with the pivot row (resp. pivot col-
umn) remaining the first row (resp. first column). There are
two ways to handle such a reindexation. The first one is to
explicitly shift the matrix after the standard Warshall-Floyd
procedure. The second one is perform the shift-toroı̈dal on
the fly, means after each update of the matrix entries. Figure
3 depicts the two possibilities.

Figure 3. Toroı̈dal shift

In a formal point of view, we now apply the following
rule

m
(k)
i−1,j−1 = mij ⊕ (m(k−1)

ik ⊗m
(k−1)
kj), (7)

where operations on subscripts are performed modulo n.
When implementing the algorithm in this way, one needs
to keep the pivot row and/or the pivot column (its depends
on the scheduling) as they could be overwritten due to the
shift. In a parallel context, where the data move between the
computing units, the memory operations that implement the
shift become virtual as they are wisely performed during the
transfers. We take all these into account to derive our linear
pipeline scheduling.

4 Description of our algorithm

4.1 Scheduling

Given a graph of order n, our scheduling can be intu-
itively described as follows. The computation of M (k), as-
signed a single processor, is performed row by row, from
the first row (the pivot) to the last one. Each row is com-
puted from the first point (the pivot) to the last one. Figure
4 displays an overview of our array.

Figure 4. Linear SPMD array for the APP

If (i, j, k) refers to the (i, j) entry of M (k), then our
scheduling can be expressed by the timing function t and

3

the allocation function a given by

t(i, j, k) = L(k, n) + (i× n + j) + 1 (8)
a(i, j, k) = k (9)

where L(k, n) is the logical computation latency due to the
graph dependencies and our row projected allocation. At
this point, we need n processors cooperating on a linear ba-
sis. Each processor operates as follows:

• compute the first row (the pivot) and keep on the local
memory

• compute + send each of the remaining rows

• send the pivot row

Computing the pivot row requires n steps, which count for
the computation latency as any value is sent out during that
time. In addition, because of the rotation, a given processor
computes a row in the order 0, 1, 2, · · · , n − 1 and outputs
the results in the order 1, 2, · · · , n − 1, 0. Thus, the total
latency between two consecutive processor is (n + 1), and
we naturally obtain

L(k, n) = (k − 1)(n + 1), k ≥ 1. (10)

Thus, processor k start its computation at step L(k, n) =
k(n+1) and ends n2 steps after (i.e. at step n2 +k(n+1)).
It is important to keep these two values in mind as they will
be locally used by each processor to asynchronously distin-
guish between computing phases and acts accordingly. Our
solution originally needs n processors, which is a strong
requirement in practice. Fortunately, the conceptual modu-
larity of our scheduling allow to overcome the problem as
we now describe.

4.2 Modularity

Recall that processor k computes M (k) and communi-
cates with processors k− 1 and processor k +1. If we have
p processors, p < n, then we adapt our schedule by just re-
questing processor k to computes M (k+αp), for all integers
α such that k + αp ≤ n. This is naturally achieved by per-
forming several rounds (n/p to be precise) over our linear
array of p processors. This corresponds to the so-called lo-
cally parallel and globally sequential (LPGS). The fact that
our steps are completely identical makes it really natural to
implement. Moreover, there is no additional memory need.
Indeed, the capability of performing all updates within the
same matrix is still valid, processor 0 continuously reads
in A and processor p − 1 continuously writes in A (there
will be no conflict as the involved locations will always be
different).

From figure ??, we see that the remaining part of M (αp)

and the yet computed part of M ((α+1)p) reside on the same

matrix space into the main memory. Moreover, the idem-
potent property of the APP (i.e. M (n+k) = M (n) = M∗,
∀k ≥ 0) provides another simplicity. Indeed, if p does not
divides n, then a strict application of our partitioning will
ends with M (m), where m = d(n/p)e × p is greater that
n. We will still get the correct result, but with an addi-
tional p − (n mod p) steps. If we do not want this addi-
tional unnecessary computation, we could just dynamically
set processor n mod p to be the last processor at the ulti-
mate round.

Because of the data communication latency, it is usu-
ally better to perform block transfers instead of atomic ones.
From a starting fine-grained scheduling, this is achieved by
tiling. Although we plan to implement our algorithm at row
level, means we compute/send rows instead of single en-
tries, which is already a kind of tiling, we still need to do
more by considering a more general tiling for the APP.

4.3 Tiling

On parallel and/or accelerated computing systems, be-
cause the communication latency is likely to dominate,
the cost of communicating a single data element is only
marginally different from that for a ”packet” of data. There-
fore, it is necessary to combine the results of a number of
elementary computations, and send these results together.
This is typically achieved by a technique called supern-
ode partitioning [5] (also called iteration space tiling, loop
blocking, or clustering), where the computation domain is
partitioned into (typically parallelepiped shaped) identical
”blocks” and the blocks are treated as atomic computations.
Such a clustering, which can be applied at various algorith-
mic level, has also proved to be a good way for a systematic
transition from a fine grained parallelism to a coarse grained
parallelism [14, 2].

Although tiling [18] is a well known strategy, even used
on uniprocessors to exploit hierarchical memories [13],
most compilers are only able of tiling rather simple pro-
grams (perfectly nested loops with uniform dependences).
The Warshall-Floyd algorithm does not belong to this class.
Thus, producing a tiled version in this case is likely to be a
manual task.

Considering the original APP formulation and the
Warshall-Floyd algorithm as previously described, a tile
version can be derived by extending the atomic operations
⊕ and ⊗ to operate on blocks. Now, each step is either the
resolution of the APP on a b × b subgraph, or a “multiply-
accumulate” operation A ⊕ (B ⊗ C), where the operands
are b×b matrices and the operations are the matricial exten-
sion of the semiring operators. The only structural change
imposed by a block version is that the row pivot (resp. col-
umn pivot) need to be explicitly updated too (they do not
remain constant as in the atomic formulation). An impor-

4

tant question raised by the tile implementation of our lin-
ear algorithm is the optimal tile size. Indeed, tiling yield a
benefit from communication latency, but at the price of the
global computation latency (i.e. p×n, which now becomes
p× (bn)). We now discuss all these points.

4.4 Performance analysis and prediction

From the formal expression of our scheduling (see (4)),
we derive the following results.

Theorem 4.1. Our algorithm solves the APP of size n in
2n2 − 1 steps using n processors.

Proof. The last result is produced at time t(n − 1, n −
1, n) = (n−1)(n+1)+(n−1)n+(n−1)+1 = 2n2−1.

Theorem 4.2. Using p processors (p < n), our algorithm
solves the APP of size n in a number of steps given by

T (n, p) = (p− 1)(n + 1) +
n3

p
. (11)

Proof. Since the last processor is p − 1, the global latency
is L(p − 1, n) = (p − 1)(n + 1). In addition, there is no
idle time in our round-robin partitioning, and the n3 com-
putations are equally shared among the p processors, thus
the additional n3/p steps.

Theorem 4.3. The time to compute the closure matrix of
order n and tile b with p processor is given by

T (n, b, p) = [(p−1)(
n

b
+1)+

(n
b)3

p
](αb3+τb2+β), (12)

where τ is the time for one (scalar) semiring operation,
α the transfer bandwidth, and β the communication band-
width.

Proof. We have simply considered the formula (11) with
n replaced by n

b in (11), together with the fact that each
operation with a block involves b3 floating point operations
and a communication routine.

Let now discuss some implementation considerations.
First, our “fine grained” operates on rows, this means that
the compute/send operation are applied on the rows basis.
Tiling is further considered, thus operating on a packet of
rows. To be precise, with a tile size b, we manipulate b rows
at each step, and the processors operates b × b blocks with
the packet of b consecutive rows. Our algorithm thus uses
a mixture of LPGS (round-robin partitioning) and LSGP
(tiling). In the timing provides by formula (12), we fully
consider the communication overhead. However, in a per-
fect implementation, the time due to data communication is
hidden by that of floating point computation. This is partic-
ularly expected with the APP because of the cubic floating

point complexity compared to the quadratic volume of the
corresponding transfer. Our algorithm really allows such a
perfect overlap because the communications are local and
are performed asynchronously from on processor to its suc-
cessor. With the CELL, this is well implemented by asyn-
chronous DMAs as we now exhibit.

5 Implementation on the CELL BE

5.1 Overview

Among the reasons why the CELL suits for implement-
ing our algorithm, we may point out the followings:

• the local store and its moderate size. Our algorithm
just requires a processor to be able to store 2 (block)
rows of the matrix. Thus, the modest size of the local
store does appear as a constraint. Moreover, its faster
and uniform access is an advantage for local perfor-
mance and global regularity

• our algorithm requires each processor to asyn-
chronously communicate with its forward (send/put)
and backward (receive/get) neighbor. This is well im-
plemented with SPE to SPE communication routines.
Indeed, a given SPE can write to the local store of the
others, thus in the LS of its forward neighbor.

• our algorithm operates with a fewer number of pro-
cessors. The CELL has up to 16 SPEs. Again, this
does not act as an implementation constraint. More-
over, operating with smaller number of processors re-
duces the global computation latency, thus improves
the efficiency of the program (relative to the number
of processors).

• DMA is fast and can be performed asynchronously
with the computations. Moreover, each SPE can ac-
cess the main memory, thus the first processor will get
the input data from the main memory while the last (re-
set dynamically if necessary) write outputs results on
the main memory.

5

Figure 5. Round-robbin implementation of
the APP on the CELL

As usual, the PPE is mainly devoted to mastering the whole
computation. The generic SPE structure is the following:

struct spe arg t {
unsigned int spe rank;
float *A;
unsigned int n;
unsigned int base backward;
unsigned int base forward;
unsigned int last spe id;
unsigned int nb round;
unsigned int tile size;
} attribute ((aligned(16)));

After the number of participating SPE has been specified
or retrieved with a call to
spe cpu info get(SPE COUNT USABLE SPES,
-1), the PPE fills up the structure with appropriate
values, prepares and launches SPE threads. The fields
base backward and base forward are used for
SPE to SPE communication (data and synchronization)
following our algorithm. The number of rounds is given by
(n/tile)/p, where p is the number of SPEs. SPE 0 (resp.
SPE last spe id reads (resp. writes) data from (resp.
to) the main memory. There is no synchronization between
the PPU and the SPEs. We now discuss individual key
points.

5.2 SPE computation

The main floating point computation kernel needed at
the SPE level are the APP on a b × b subgraph (tile), or
a “multiply-accumulate” operation A ⊕ (B ⊗ C) on tiles.
The corresponding SIMD code looks like the one displays
in figure 6. Indeed, the code could be significantly opti-
mized, this is not the scope of this work but will be done at
the soonest.

vo i d b l o c k p i v o t w a r s h a l l (
f l o a t ∗∗ p i v o t , u n s i g n e d s h o r t b){
v e c t o r f l o a t w;
v e c t o r f l o a t ∗u , ∗v ;
f l o a t e ;
u n s i g n e d i n t i , j , k ;
f o r (k =0; k<b ; k ++){
u = (v e c t o r f l o a t ∗) (p i v o t [k] [0]) ;
f o r (i =0 ; i<b ; i ++){

v = (v e c t o r f l o a t ∗) (p i v o t [i] [0]) ;
e = p i v o t [i] [k] ;
w = (v e c t o r f l o a t){ e , e , e , e } ;
f o r (j = 0 ; j < b / 4 ; j ++)

v [j] = f mi n f 4 (v [j] ,
s p u a d d (u [j] ,w)) ;

}
}

Figure 6. SIMD code for the b× b APP

There are mainly three phases. The first one is the la-
tency phase, where the SPE has not yet received any data.
The second phase starts with the reception of the pivot row,
which is then updated an stored into a buffer in the local
store. In the third phase, the last one, the SPE is also in-
active and is just waiting the other ones to finish their re-
maining computations. Obviously, the overhead of the first
and the last phases increases with either a longer array or a
bigger tile size. This is the point for the pipeline compro-
mise. Each SPE asynchronously detects the phases using a
timer variable (local counter incremented after each step).
The program uses the formula of the latency (i.e. 2k for
processor k), and that of the last step (i.e. n + 2k + 1 for
processor k), recall we compute/send a (block) row at a step
. Thus, the SPE performs an internal control during all its
computations. That is why there is no need of any kind of
synchronization with or via the PPU.

5.3 Data communication

At a step, the SPE updates a row and puts it (DMA)
into the corresponding buffer of its forward neighbor SPE
and then waits for its completion. Since its backward SPE
neighbor has done the same, the SPE then receives its data
for the next step without any additional delay. Thus, all our
communications (DMA) are local and fully parallel. For
SPE 0, we apply an explicit double buffering as it receives
its data from the main memory (DMA get). Although this
sounds like a perfect DMA/computation overlap, we think
that there is room for improvement, mainly on the SPE to
SPE communication. Indeed, the fact that the SPE waits for
the completion of its DMA put could be avoided by another
double buffering. One way to achieve this is to start with

6

tiles of size 2b and then switch to tiles of size b after each
SPE has received its pivot row. This will be studied later.

5.4 Synchronization issue

One way to synchronize the SPE is to use mailbox mech-
anism with the PPU. Such a central synchronization is suf-
ficient, but could be costly as it would be heavily used for
our step by step synchronizations. In addition, this has also
a hindering impact on scaling. Instead, we chose to im-
plement a local synchronization, thus strictly following the
philosophy of our algorithm. To do so, each SPE has two
flag variables, flag backward and flag forward. At
the end of a given step,

• SPE k writes counter+1 into the flag backward
of SPE k+1 to indicate he has finished and has put the
data on its local store for further processing.

• SPE k writes counter+1 into the flag forward
of SPE k−1 to indicate he has finished and is ready to
receive new data on its working buffer.

• SPE k pools its variables flag backward and
flag forward to check if they have been updated
(if their value are still equal to counter).

In order to avoid a deadlock, when a given SPE has per-
formed its latest computation, it performs an additional for-
ward signaling for the next SPE to perform its last step in-
dependently.

We now turn to experimental results. The goal is to vali-
date our algorithm and discussions about latency, tiling and
scalability.

6 Performance results

All our experimentations are performed on a QS22
CELL Blade and single precision computation. First, we
need to see how tiling affects the performance of our pro-
gram. In table 1, we use our algorithm to solve the APP
with matrices of size 128× 128, 256× 256, and 512× 512
respectively (times are in seconds).

Tile 128× 128 256× 256 512× 512

1 0.0216 0.1321 0.8921
4 0.0110 0.0823 0.6371
8 0.0104 0.0782 0.6082

12 0.0092 0.0754 0.5839
16 0.0105 0.0781 0.6017
20 0.0095 0.0696 0.5757
24 0.0098 0.0704 0.5872
28 0.0088 0.0782 0.5901
32 0.0115 0.0815 0.6119

Table 1. Relative impact of tiling

Recall that tile size b means we operate on the whole
matrix by b × n block rows. What we see is that, a part
from the fine grained computation, the difference with dif-
ferent tile sizes is marginal. This is certainly due the fact
that the matricial operation dominate as we will see on the
next results. However, as previously mentioned, our ker-
nel for block APP is not sufficiently optimized, otherwise
we would have certainly observe a more significant differ-
ence. Nevertheless, we observe a factor 2 improvement be-
tween using tile of size 20 and the fine-grained version for
instance. Now, we reconsider our three matrices and per-
form a scalability test from 1 SPE to 8 SPEs. In figure 7,
we display the global execution time (measured from the
PPU) with various tile sizes in {1, 4, 8, 12, 16}, σ refers to
the speedup compared to 1 SPE.

1 SPE 2 SPEs 8 SPEs
Tile t(s) t(s) σ t(s) σ

1 1.3 1.25 1.06 0.31 4.29
4 0.8 0.41 2.00 0.11 7.78
8 0.7 0.39 1.99 0.11 7.21

12 0.7 0.36 2.08 0.10 7.93
16 0.7 0.40 1.97 0.14 5.65

(a) Performance with a 256×256 matrix

1 SPE 2 SPEs 8 SPEs
Tile t(s) t(s) σ t(s) σ

1 0.892 0.434 2.05 0.213 4.19
4 0.637 0.318 2.00 0.080 7.96
8 0.608 0.304 2.00 0.078 7.79
2 0.584 0.293 1.99 0.074 7.88
6 0.602 0.302 1.99 0.083 7.23

(b) Performance with a 512×512 matrix

1 SPE 2 SPEs 8 SPEs
Tile t(s) t(s) σ t(s) σ

1 6.67 3.28 2.03 1.60 4.16
4 5.01 2.50 2.00 0.62 7.99
8 4.79 2.39 2.00 0.60 7.95

12 4.70 2.32 2.02 0.56 8.36
16 4.72 2.36 2.00 0.60 7.79
(c) Performance with a 1024×1024 matrix

Figure 7. Timings on a CELL QS22

Again, a part from the fine-grained version, we observe
a perfect scaling (sometime superlinear) of our program. In
order to illustrate the efficiency of our method (scheduling
+ DMA + synchronization), we show in table 2 the timings
with our 1024×1024 matrix, using a version of our program
where the block APP kernel is disable. We clearly see that
the overhead due to our method is definitely negligible and
that the absolute performance now relies on the block APP
kernel. By replacing our APP kernel code by a fast im-
plementation similar to that of the matrix product in [12],
our implementation achieves 80 GFLOPS (note that since

7

the limit for the APP is 102 GFLOPS as the ”multiply-add”
cannot be used).

1 SPE 2 SPEs 8 SPEs
Tile t(s) t(s) σ t(s) σ

1 1.87 1.20 1.56 0.53 3.49
4 0.39 0.47 0.83 0.11 3.70
8 0.19 0.12 1.64 0.06 3.78

12 0.12 0.08 1.65 0.03 4.02
16 0.09 0.06 1.63 0.03 3.78

Table 2. DMA timings with a 1024×1024 ma-
trix

7 Conclusion

Definitely, SPE to SPE communication can be used to
derive efficient linear SPMD program on the CELL. This is
the case with our solution for the algebraic path problem.
Our algorithm has lot of interesting properties that match
the characteristics and capabilities of the CELL. Moreover,
we think that our linear array scheduling can be imple-
mented in the same way with a cluster of CELLs (same
array with border communications done with MPI). This
has to be investigated, together with an SPU optimization
of the APP kernel. We are confident that, together with our
scheduling and implementation strategy, this will allow us
to offer a solution very close to the peak performance even
on huge instances. We also believe that our methodology
could be successfully used at algorithmic level to derive ef-
ficient CELL programs for many other applications.

References

[1] Cell SDK 3.0.
www.ibm.com/developerworks/
power/cell.

[2] D. Cachera, S. Rajopadhye, T. Risset, C. Tadonki,
Parallelization of the Algebraic Path Problem on Lin-
ear SIMD/SPMD Arrays, IRISA report n 1409, july
2001.

[3] R. N. Floyd, Algorithm 97 (shortest path), Comm.
ACM, 5(6):345, 1962.

[4] S.-C. Han, F. Franchetti, and M. Pschel, Program
generation for the all-pairs shortest path problem,
PACT ’06: Proc. 15th International Conference on
Parallel Architectures and Compilation Techniques,
pp.222-232, ACM, New York, NY, USA, 2006.

[5] F. Irigoin and R. Triolet, Supernode partitioning, in
15th ACM Symposium on Principles of Program-
ming Languages, pp. 319-328, ACM, january 1988.

[6] Jakub Kurzak and Jack Dongarra, QR factorization
for the Cell Broadband Engine, Scientific Program-
ming, vol. 17(1-2), P. 31-42, 2009.

[7] Jakub Kurzak, Alfredo Buttari, and Jack Don-
garra, Solving Systems of Linear Equations on
the CELL Processor Using Cholesky Factorization,
www.netlib.org/lapack/
lawnspdf/lawn184.pdf

[8] Kazuya MATSUMOTO and Stanislav G. SE-
DUKHIN, A Solution of the All-Pairs Shortest Paths
Problem on the Cell Broadband Engine Proces-
sor, IEICE Trans. Inf. & Syst., Vol. E92.D, No. 6,
pp.1225-1231, 2009 .

[9] S.-Y KUNG, S.-C. LO ; LEWIS P. S., Optimal sys-
tolic design for the transitive closure and the short-
est path problems, IEEE transactions on computers
ISSN 0018-9340, 1987, vol. 36, no5, pp. 603-614.

[10] H. Peter Hofstee, Power Efficient Pro-
cessor Design and the Cell Processor,
http://www.hpcaconf.org/hpca11/
slides/Cell Public Hofstee.pdf.

[11] Vinjamuri, S. Prasanna, V.K., Transitive closure
on the cell broadband engine: A study on self-
scheduling in a multicore processor, IEEE Interna-
tional Parallel & Distributed Processing Symposium
(IPDPS), p. 1 - 11, Rome, Italy, 23-29 May 2009.

[12] http://www.tu-dresden.de/zih/
cell/matmul

[13] S. Sen and S. Chatterjee, Towards a theory of cache-
efficient algorithms, SODA 2000.

[14] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya,
A blocked all-pairs shortest-paths algorithm, J. Ex-
perimental Algorithmics, vol.8, no.2.2, 2003.

[15] S. Warshall, A Therorem on Boolean Matrices,
JACM, 9(1):11-12, 1962.

[16] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Hus-
bands, and K. Yelick, The potential of the Cell pro-
cessor for scientific computing, CF ’06: Proc. 3rd
Conference on Computing Frontiers, pp.9-20, ACM,
New York, NY, USA, 2006.

[17] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Hus-
bands, and K. Yelick, Scientific Computing Kernels
on the Cell Processor, International Journal of Paral-
lel Programming, 2007.

[18] Jingling Xue, Loop tiling for parallelism, Kluwer
2000.

8

