
HPC Seminar
Universidade Federal Fluminense (UFF)

April 27, 2017, Niteroi (Brasil)

Claude TADONKI

MINES ParisTech – PSL Research University
Centre de Recherche Informatique

claude.tadonki@mines-paristech.fr

Sequential
84 seconds

Expected
84/84 = 1 second

Got
25 seconds

Got
2 seconds

!?!

 Conceptual key factors related to scalability

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Operating System
•  Threads creation & scheduling
•  Synchronization
Hardware Mechanism
•  Resources sharing
•  Memory accesses
Tasks Scheduling
•  Load imbalance Loss of parallel efficiency !!!!

Claude TADONKI

Amdahl Law

Code to be parallelized

Parallel Programming model

Shared memory Distributed memory

Sequential Part

•  Processes initialization & mapping
•  Data communication
•  Synchronization
•  Load imbalance

 Magic word: SPEEDUP

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

σ(p) = Ts ⁄ Tp

e = σ(p) ⁄ p

Speedup

Efficiency (parallel)

Always keep in mind that these metrics only refer to “how go is our parallelization”.

They normally quantify the “noisy part” of our parallelization.

A good speedup might just come from an inefficient sequential code, so do not be so happy !

Optimizing the reference code makes it harder to get nice speedups.

We should also parallelize the “noisy part” so as to share its cost among many CPUs.

 Amdahl’s Law illustration

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI
p par = 95% par = 90% par = 75% par = 50%

Simulated parallel timings

 Illustrative example

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

 Illustrative performances with an optimized LQCD code

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Optimal absolute performance on a single core and good scalability !!!

Something happened !!!

LQCD performance on a 44 cores processor

Let’s now explore and understand it.

 What is the main concern ?

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Speedup is just one component of the global efficiency
 We need to exploit all levels of parallelism in order to get the maximum SC performance

Because of cost from explicit interprocessor communication, a scalable SMP
implementation on a (manycore) compute node is a rewarding effort anyway.

 Main factors against scalability on a shared memory configuration

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Threads creation and scheduling

Load imbalance

Explicit mutual exclusion

Synchronization

Overheads of memory mechanisms

Misalignment (when splitting arrays)

False sharing

Bus contention

NUMA effects

Let’s now examine each of these aspects.

 Thread creation and scheduling

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Thread creation + time-to-execution yield an overhead (usually marginal)

Dynamic threads migration could break some good scheduling strategies

Threads allocation without any affinity could result in an inefficient scheduling

The system might consider only part of available CPU cores

Threads scheduling regardless of conceptual priorities could be inefficient

Creating an pool of (always alive) threads that operate upon request is one solution

 Load imbalance or unequal execution times

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Tasks are usually distributed from static-based hypotheses

Effective execution time is not always proportional to static complexity

Accesses to shared resources and variables will incur unequal delays

The execution time of a task might depend on the values of the inputs or parameters

Influence on the execution path following the controls flow

Influence on the behavior because of numerical reasons

Constraints overhead from particular data location

Specific nature of data from particular instances (sparse, sorted, combinatorial complexity, …)

We thus need to seriously consider the choice between static and dynamic allocations

Thread 1 Thread 2 Thread 3 Thread 4 Thread 1 Thread 2 Thread 3 Thread 4

°°°

 Static bloc allocation vs Dynamic allocation with a pool of tasks

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Static block allocation

Dynamic allocation with a pool of tasks

Assignment can be from input or output standpoint

The need for synchronization is unlikely

Equal chunks do no imply equal loads

This is the most common allocation
Each thread is assigned a predetermined block

Usually organized from output standpoint

More balanced completion times are expected (effective load balance)

Synchronization is needed to manage the pool (some overhead is expected)

Increasingly considered
Thread continuously pop up tasks from the pool

block, cyclic or block-cyclic

The granularity is important

The choice depends on the nature of the computation and the influence of data accesses

 Explicit mutual exclusion

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Applies on critical resources sharing

Applies on objects that cannot/should be accessed concurrently (file, single license lib, …)

Used to manage concurrent write accesses to a common variable

A non selected thread can choose to postpone its action and avoid being locked

Thread 1 Thread 2 Thread 3 Thread 4

Critical
resource

Several threads are asking for
the critical resource and typically get locked

Only one thread is selected to get the critical resource
and the others remain locked

Critical resource is thus given to the requesting threads
on a purely sequential basis

Since this yields a sequential phase, it should be used skilfully (only among the threads that
share the same critical resource – strictly restricted to the relevant section of the program)

 MEMORY

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Since memory is (seamlessly) shared by all the CPU cores in
a multicore processor, the overhead incurred by all relevant
mechanisms should be seriously considered.

 MEMORY: Misalignment

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

In case of a direct block distribution, some threads
might received unaligned blocks.

Threads to whom unaligned blocks are assigned will experience a slowdown

alignment pattern

distribution pattern

The impact of misalignment is particularly severe with vector computing

Always keep this in mind when choosing the number of threads and splitting arrays

 MEMORY: Levels of cache

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

The organization of the memory hierarchy is also important for memory efficiency

Case (a):
 Assigning two threads which share lot of input data to C1 and C3 is inefficient

Case (b):
 In place computation will incur a noticeable overhead due to coherency management

We should care about memory organization and cache protocol

Frequent thread migrations can also yield loss of cache benefit

 MEMORY: False sharing

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

This the systematic invalidation of a duplicated cache line on every write access

The conceptual impact of this mechanism depends on the cache protocol

The magnitude of its effect depends on the level of cache line duplications

A particular attention should be paid with in place computation

 MEMORY: Bus contention

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

The paths from L1 caches to the main memory fuse at some point (memory bus)

As the number of threads is increasing, the contention is likely to get worse

Techniques for cache optimization can help has they reduce accesses to main memory

Redundant computation or on-the-fly reconstruction of data are worth considering

A typical configuration looks like this

 MEMORY: NUMA configuration

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

NUMA = Non Uniform Memory Access

≠ UMA

The whole memory is physically partitioned but is still shared between all CPU cores

This partitioning is seamless to ordinary programs as there is a unique addressing

 MEMORY: NUMA impacts

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

NUMA Nodes are linked by QPI links

The distances matrix between NUM nodes is displayed
 by issuing numactl	--hardware	command

These distances give an idea on how nodes are connected

“Local accesses” are of course faster that “remote accesses”

Links between NUMA nodes are potentially subject to heavy contention

It is important to know the topology of the processor (memory and CPU cores)

Memory allocation and thread binding to specific nodes are possible within programs

NUMA-unaware programs are likely to yield a noticeably poor scalability

 MEMORY: NUMA management

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

NUMA considerations can be handled within programs through libraries like libnuma

The library allow to

•  allocate memory on a specific node

•  ask to interleave an array on all NUMA nodes

•  check on which node a given memory space is allocated

•  identified on which NUMA node a given core (logical id) belongs to

Such libraries should be used with flexibility in order to avoid portability issues

An efficient explicit management of NUMA considerations can improve scalability

 Successful NUMA Optimization (LQCD on Broadwell-EP)

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

 Recommendations

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Identify the main performance related characteristics of the processor

Skilfully consider threads related features at programming level

Design a NUMA-aware memory allocation and management strategy

Consider preventing threads migration through thread binding statements

Do your best to reduce accesses to main memory

Address load imbalance or unequal thread completion times

Use good profiling tools and proceed with incremental improvements

 END

HPC Seminar, Universidade Federal Fluminense (UFF)
April 27, 2017, Niteroi (Brasil)

Scalability on Manycore Machines

Claude TADONKI

Thanks for your attention

