
Automatic LQCD Code Generation

Quatrièmes Rencontres de la Communauté Française de Compilation

December 5-7, 2011

Saint-Hippolyte (France)

Claude Tadonki
Mines ParisTech – CRI (Centre de Recherche en Informatique) - Mathématiques et Systèmes

LAL (Laboratoire Accélérateur Linéaire)/IN2P3/IN2P3

Joint work with
D. Barthou, C. Eisenbeis, G. Grosdidier, M. Kruse, L. Morin, O. Pène, and K. Petrov,

PetaQCD Project

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

The only systematic and rigorous method to solve this theory is Lattice QCD (LQCD), which
can be numerically simulated on massively parallel supercomputers.

Quantum Chromodynamics is the theory of strong interactions, whose ambition is to
explain nuclei cohesion as well as neutron and proton structure, i.e. most of the visible
matter in the Universe.

Background

LQCD simulations are based on the Monte Carlo paradigm. The main ingredient of the
computation is the resolution of a linear system based on the Dirac matrix, which is an
abstract representation of the (local) Dirac operator.

The Dirac operator applied on a site x of the lattice can be expressed as follows:

The Dirac operator involves a stencil computation, which applies on a large number of sites.

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

Large volume of data (disk / memory / network)

Significant number of solvers iterations due to numerical intractability

Redundant memory accesses coming from interleaving data dependencies

Use of double precision because of accuracy need (hardware penalty)

Misaligned data (inherent to specific data structures)

Exacerbates cache misses (depending on cache size)

Becomes a serious problem when consider accelarators

Leads to « false sharing » with Shared-Memory paradigm (Posix, OpenMP)

Padding is one solution but would dramatically increase memory requirement

Memory/Computation compromise in data organization (e.g. gauge replication)

Key Computation Issues

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

One application of the Dirac operator involves more than thousand floating
point instructions, thus it is hard to plan low level optimization by hand.

There are different variants of the Dirac operator and several way of expression
the calculation depending on the data layout.

There are different target architectures which can be considered. Thus, generating
the code for each of them manually can be tedious and error-prone.

One way to seek optimal implementation is to filter from an exhaustive search
over all possible (or reasonable) .

Why an Automatic Code Generation System
As the formulae could be frequently changed or adapted, a push-button
system to get the corresponding code is certainly comfortable.

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

How the chain is implemented

From an input file containing the formalism (formulae + algorithm), the QIRAL
module generates a code prototype (called pseudo-code)

QIRAL is composed with a set of rewriting rules and predefined datatypes. The
input, even written in latex, has to follow some syntaxic guidelines

Experienced user can modify the kernel of QIRAL in order for instance to
enhance the rewriting rules basis or introduce new datatypes.

The output of QIRAL (the pseudo-code) is clearly a C-like prototype, which
therefore needs to be retreated in order to obtain a valid (C or C++) code.

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

The full working chain https://www.petaqcd.org/chain/

https://www.petaqcd.org/chain/

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

The pseudo-code
from Latex

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

The needs from the pseudo-code to a valid C code
the variables need to be explicitly declared (QIRAL declares part of the main ones)

some simplification still need to be done (id(C) x id(S) = id(C x S) and id(n)*u = u)

special statements need to be appropriately expanded (sum(d in {dx,dy,dz,dt})

libraries calls are required for macroscopic operations (Ap[L].Ap[L]) ; (Ap[L].r[L])

specific routines should be called for special operations like (id(S) + gamma(d))*u)

4D indexation should be correctly handled/matched with its 1D correspondence

some profiling and monitoring instructions should be inserted for user convenience

I/O routines are required for user parameters and data files

The last point is particularly important since it will determine the routines to be
called (in standard C) or the method execute (C++ / ad-hoc polymorphism).

data types need to be correctly captured for further semantic purposes

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

The C code from the
pseudo-code

The module is based on Lex and Yacc

Its generated a valid C code

The output is associated to an
external library for special routines

A C++ output is planned, will be
associated with QDP++ or QUDA
through a specific interface

A web based interface is available

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

Running the code
(mCR solver)

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

PetaQCD Project

Concluding remarks and peserspecives

Try to generate the final code in one step

Insert pragmas (OpenMP, HMPP, …) for special targets or automatic parallelization

Add a complexity evaluation module (useful for automatic code optimization)

Build the global system including the searching mecanism to reach the optimal code

Generalize the framework (LQCD should not remains the main target)

 Automatic LQCD Code Generation Claude Tadonki

Quatrièmes Rencontres de la Communauté Française de Compilation
December 5-7, 2011 , Saint-Hippolyte (France)

THANKS FOR YOUR ATTENTION

END

