
Dendrogram-based Algorithm
Weighted Graphs Flooding

Algorithm – Implementation - Parallelization

Claude Tadonki and Fernand Meyer

Centre de Recherche en Informatique

Centre de Morphologie Mathématique

Mines ParisTech

TIMC Project
Arnaud de La Fortelle et Fabien Moutarde (CAOR)
Matthieu Faessel, Serge Koudoro, Beatriz Marcotegui et Fernand Meyer (CMM)
Claude Tadonki, Laurent Daverio et Francois Irigoin (CRI)

Séminaire au Centre de Morphologie Mathématique (Mines ParisTech)
Fontainebleau – January 27, 2014

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

We study a decomposition algorithm based on the structure of dendrogram
Dijkstra algorithm is greedy
Berge algorithm is dynamical programming

(1) Build the dendrogram (this is a n-ary tree, we have considered a binary correspondance)

(2) Distribute the ceiling values of the vertices among the subdendrograms (this is a mintree)

(3) Flood the dendrogram from its leaves until we get the flooding levels of all vertices.

Theses are the main steps of the
dendrogram-based algorithm.

Dendrogram based algorithm has several strengths

 - can be used to generate information from a local input (flooding from a single vertex)

 - exposes parallelism (when dismantling subdendrograms)

 - several floodings of the same graph can be performed using its dendrogram structure. This aspect is

 particularly interesting because flooding from the dendrogram is very fast compared to the cost of

 constructing the dendrogram structure itself.

 - is potentially efficient because key information are handled at the level of the sets (rather than individual vertices).

Other algorithms are global, so will always process with and for the whole graph,

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

Live demo !!!

http://www.cri.ensmp.fr/TIMC/dendrogram/index.htm

D ← Ø
S ← {all edges (u, v, w) of the graph}
while(S ≠ Ø){
 //we select the edge with minimum cost
 (u, v) ← min_w(S); //we can sort the list of edges and select on top
 //we remove that edge from S
 S ← S – {(u, v)};
 //we get the id the of the root subdendrogram containing u
 d1 ← id_root_subdendrogram(u);
 //we get the id the of the root subdendrogram containing v
 d2 ← id_root_subdendrogram(v);
 //we create a singleton subdendrogram if no one was so far created
 if(d1 == NULL) d1 ← dendrogram_singleton({u});
 if(d2 == NULL) d2 ← dendrogram_singleton({v});
 //we merge the two subdendrogam d1 and d2 to form a new one (parent)
 if(d1 ≠ d2)
 D ← D  d;
 d ← dendrogram_merge(d1, d2);
 endif
}

dendrogram_singleton({u}) creates a subdendrogram with singleton {u}

If u and v belong to an existing subdendrogram, then we avoid recreating it

id_root_subdendrogram(u) is obtained by climbing from

dendrogram_singleton({u}) to the maximal subdendrogram following the

parent (successor) relation. This function is the most time consuming of the
construction. Its global impact depends on the depth or

height of the dendrogram tree.

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

In (a), getting the root from node s will cost 1, 2, 3, 4, and 5 steps respectively.

In (b), getting the root from node s will cost 1, 2, 3, and 4 steps respectively.

(a) and (b) are linear graphs, so each edge leads to a subdendrogram.

This is not the case with any graph, like those containing cycles.

(a) Dendrogram constructed from a linear graph
 Depth = 7

(b) Dendrogram constructed from a linear graph
 Depth = 8

For each subdendrogram, we keep the outgoing edge with minimum cost.

Having the list of edges sorted makes this easy, since the minimum outgoing

edge is exactly the one connecting the subdendrogram to its parent.

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

Going from a given leave to the root of its containg sub-dendrogram is so

repeated that it costs. We should move from the previous root (so, store the roots!).

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

//we get the leaf subdendrogram from which twe start the flooding process
d ← leaf_subdendrogram(x)

//we go up while the ceiling is still greather that the diameter

while((!is_root(d))&&(ceil(d) > diam(d))) d ← pred(d);

//we have reached a root and still get a ceiling greather that the diameter

//we set the definitive flooding values of this subdendrogram to ceil(d)

if(ceil(d) > diam(d)) set_flooding_level(d, ceil(d));

else dismantle_ancestors(d, ceil(d));

The dismantling process breaks the (sub)dendrogram into independent root subdendrograms.

Newly created root subdendrograms during the dismantling process are put into a FIFO queue.

Each root subdendrogram is flooded through its vertex with the minimum id (value into the FIFO).

flood_from_vertex (x)

The complete flooding process is achieved using the following loop

//the last subdendrogram we have created is maximal, thus a root
FIFO_root_to_explore[0] ← lastly_created_subdendrogram
nb_root_to_explore ← 1
for(i = 0; i < nb_root_to_explore; i++)
 flood_from_vertex(get_vertex_with_min_id(FIFO_root_to_explore[i]);

The FIFO will be populated during the dismantling processes and
nb_root_to_explore will be incremented accordingly.

In which order should we explore
the sub-dendrograms ? Does this
impact on the decomposition ? Perf ?

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

while(!is_root(d)){
 for(i = 0; i< nb_children(d); i++){
 e ← get_child_subdendrogram(d, i);
 cut_relationship(e, d); //e is no longer a child of d (dismantling)
 //the min_out_edge is set to max(min_out_edge, ceil(d)) VERY IMPORTANT!!!
 if(min_out_edge(d) < ceil(d)) set_min_out_edge(e, ceil(d));
 if(ceil(e) > min_out_edge(e)) set_ceil(e, min_out_edge(e)); //update of ceil(e)
 if(ceil(e) > diam(e)) set_flooding_level(e, ceil(e));
 else{FIFO_root_to_explore[nb_root_to_explore] = e; nb_root_to_explore++;}
 }
 d ← pred(d);
}

The minimum outgoing edge is compared to the ceiling of the parent, and we take the maximum.

The dismantling process can either terminate the flooding of a subdendrogram or make it independent.

dismantling_ancestors(d)

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

typedef struct
{
 int edge_id; // the id of the edge used to cerate this dendrogram (by merging)
 char is_leaf_left; // tells if the left child is a (sub)dendrogram or vertex
 char is_leaf_right; // tells if the right child is a (sub)dendrogram or vertex
 double diam; // diameter of the (sub)dendrogram
 double min_outedge; // the outgoing edge with the minimum cost
 int size; // number of vertices of the support of this (sub)dendrogram
 double ceil; // global ceiling of the dendrogram (obtained when propagating the input ceiling values)
 double flood; // flooding value of the dendrogram (TO BE COMPUTED)
 int smallest_vertex; // we keep the id of the vertex with the smallest ceiling
 int pred; // the predecessor of this (sub)dendrogram (its parent in the hierarchical structure)
 int child_left; // a dendrogram is obtained by fusing two subdendrograms (left, right)
 int child_right; // right child
} dendro;

typedef struct
{
 int nb_nodes;
 int nb_edges;
 int max_degree;
 double *weight; // weight of the vertices (if any)
 int *neighbors; // neighborhood of the nodes (array of size nb_nodes*max_degree)
 double *values; // values in the edges (array of size nb_nodes*max_degree)
} graph;

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

The height of the dendrogram is moderate

Building the dendrogram predominates

We outperform Dijkstra by factor > 2

The height of the dendrogram is
more related to the density

We significantly outperform Dijkstra

Could we eliminate
inoffensive edges.

The flooding step is noticeably
fast (10% of the overall time)

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

Number of nodes: 24 532

Number of edges: 96 138

Neighborhood graph

generated by morph-m

Flooding values computed

dendrogram-based algorithm

Constructing the dendrogram: 1.737 s

Flooding process: 0.002 s

Whole algorithm: 1.739 s

Basic Dijsktra algorithm: 59.042 s

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

Dismantling isolates independent subdendrograms
which can be explored in parallel

Care about threads creation overhead

Contend the effect of unbalanced load

The flooding step can thus be parallelized

We consider a multithread implementation using pthread

We create our threads once and each iterates on
available subdendrograms isolated during dismantling

The threads get their exploration tasks (subdendrograms)
from a common pool in a round robbing way.

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

TIMC webpage http://www.cri.ensmp.fr/projet_timc.html
Simulator http://www.cri.ensmp.fr/TIMC/dendrogram/index.htm
Results & code http://www.cri.ensmp.fr/TIMC/dendrogram/flooding.htm
Report http://www.cri.ensmp.fr/classement/doc/E-329.pdf

http://www.cri.ensmp.fr/projet_timc.html
http://www.cri.ensmp.fr/projet_timc.html
http://www.cri.ensmp.fr/TIMC/dendrogram/index.htm
http://www.cri.ensmp.fr/TIMC/dendrogram/index.htm
http://www.cri.ensmp.fr/TIMC/dendrogram/flooding.htm
http://www.cri.ensmp.fr/TIMC/dendrogram/flooding.htm
http://www.cri.ensmp.fr/classement/doc/E-329.pdf
http://www.cri.ensmp.fr/classement/doc/E-329.pdf
http://www.cri.ensmp.fr/classement/doc/E-329.pdf

Claude Tadonki (CRI)
Fernand Meyer (CMM)

Dendrogram-based algorithm for graph flooding under ceiling constraints
TIMC project – Mines ParisTech (CAOR/CMM/CRI)

Parallelize the construction of the dendrogram

How to get the dendrogram of a modified graph from that of the original ?

Consider load balanced from the size of the subdendrograms (instead of their number)

Mathematical programming appraoches

